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ABSTRACT

A key component of the modern Earth observation system is the Mid-Infrared (MIR) hyper-

spectral sounder. Operational instruments on polar orbiting satellites are collecting a continuous

record of highly accurate infrared spectra with a wide variety of applications in geoscience. Al-

though some research instrumentation early in the development of the meteorological satellite used

Far-Infrared (FIR) sensitive detectors, the primary focus of infrared instrumentation has been the

MIR region. Recent developments in FIR instrumentation and a renewed interest in the FIR for

climate applications has brought attention to this underexplored part of Earth’s Infrared spectrum.

The information content of Earth’s FIR spectrum is investigated within a modeling frame-

work that simulates satellite observations of FIR and MIR spectra at hyperspectral resolution. The

framework allows for direct comparison of the two spectral ranges, which can quantify the po-

tential benefits of combining FIR spectral observations with the state of the art MIR observations.

The framework is first applied to investigate the information content for retrieving the vertical tem-

perature and water vapor profile in clear sky conditions. The FIR shows additional sensitivity to

upper tropospheric and lower stratospheric water vapor, and a slight but consistent vertical resolu-

tion advantage relative to the MIR. By extending the simulation framework to include layer clouds

composed of ice particles, the information content in cloudy sky profiles and cloud properties

is investigated. In certain conditions, the FIR shows additional profiling information transmitted

through the cloud layer and additional information above the cloud through the interaction between

water vapor absorption and ice particle scattering and absorption. Finally, the including FIR spec-

tra increases information content for cloud properties in cases where the MIR has poor sensitivity.

These cases include high optical depth clouds and clouds with particle effective radius. Error prop-

agation calculations are used to estimate the improvement on the resulting cloud Ice Water Path
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(IWP). These results suggest extending the spectral coverage of the hyperspectral sounder into the

FIR would improve the retrieval of several important geophysical quantities.
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Chapter 1

Introduction

Understanding Earth’s weather and climate requires detailed knowledge of the energy flows

in and out of the system, at a wide variety of spatial and temporal scales, across a wide swath of

the electromagnetic spectrum. From this planetary perspective, it is most convenient to split the

spectrum according to the energy flow into the Earth system from the Sun, called the “shortwave”

radiation, and the energy flow out from the Earth in the form of “longwave” radiation. This split

is also useful to classify passive remote sensing techniques. In large part, when studying radiative

processes in the shortwave region, the problem can be considered one of scattering, reflection,

and absorption of the incident irradiance from the Sun, with no emission at all from any terres-

trial sources. In the longwave region, the problem is now typically dominated by emission from

terrestrial sources, with some scattering and reflection depending on specific wavelength in con-

sideration. The solar term in the longwave can be taken as zero, since it is orders of magnitude

smaller than the terrestrial terms (Figure 1.1). The separation between these two regimes is not a

sharp boundary, but typically a wavelength of roughly 4 µm (wavenumber 2500 cm−1) is a reason-

able choice. Wavelengths near this value are neither purely “shortwave” nor “longwave” in their

characteristics, and exhibit radiative influence from all of the above processes.

The longwave spectrum can be further divided into several primary spectral bands. The lowest

frequency region, microwave, can be taken as < 300 GHz (or equivalently a wavelength of > 1

mm). This of course includes radio waves, but for purposes of meteorology, radio waves are not

typically relevant so can be ignored in this discussion. The highest frequency region is the infrared,
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Figure 1.1 The solar spectral irradiance, for zero degree zenith angle, and the earth spectral

emittance (for a clear sky standard atmosphere) at the top of the atmosphere. The solid vertical

line marks the longwave-shortwave division at wavenumber of 2500 cm−1 (4 µm wavelength).

Earth spectrum computed from LBLRTM, Solar spectrum from (Kurucz, 1992).
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which is defined here as frequencies of > 3 THz (100 cm−1) or equivalently wavelengths < 100

µm. Between these two regimes is the submillimeter band, covering wavelengths between 1 and

0.1 mm (0.3–3 THz). The infrared can be further split into two regions, the far and mid infrared,

at a wavenumber of 667 cm−1 (15 µm wavelength). Typically another division at perhaps 1500

cm−1 (6.7 µm wavelength) would be made to separate mid infrared from “shortwave” infrared (not

to be confused with the definition “shortwave” radiation above), but that distinction is not relevant

to the discussion at hand, so the entire band 667–2500 cm−1 (15–4 µm) will be considered as the

MIR band. These spectral range definitions are summarized in Table 1.1. Figure 1.2 shows these

definitions as annotations on over a simulated brightness temperature spectrum.

Although these different regimes throughout the longwave have significantly different scatter-

ing characteristics for atmospheric particles because of the wide range in scattering size parameter,

the radiative transfer problem is actually quite similar across the entire range, especially in cloud-

free atmospheres. Thus, to some extent the divisions between these regimes are made to reflect

the specific technology used to make instrumentation for the given frequency range. For exam-

ple, microwave instruments often use coherent detection with heterodyne receivers, while infrared

detectors are typically photoelectric. In fact, one of the reasons for the lack of observations in

the FIR region is the lack of mature instrumentation choices. MIR photodetectors can be created

with sensitivity to longer wavelengths, and thus lower energy photons, by engineering materials

with smaller band gap energies. At such small band gaps, the thermal electron energy must be

greatly reduced to prevent an overwhelming background signal; this implies much lower tem-

perature cooling systems which add significant cost and complexity. From the other direction,

microwave systems can be designed for higher frequencies. Some recent limb sounding missions

have had used channels at 500 GHz and 600 GHz (Odin, Nordh et al. (2003), SMILES, Takahashi

et al. (2010)), and the highest frequency reached was the 2.25 THz channel on the Aura MLS

(Schoeberl et al., 2006). Higher frequencies are not easily measured with coherent techniques, as

it becomes difficult to construct reliable local oscillators at these high frequencies (Evans et al.,

2002). Direct detection at these frequencies can be done with bolometers, but achieving low noise

requires advanced detector technologies such as high temperature superconducting films. This in
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an area of ongoing research (Kreisler and Gaugue, 2000), but no recent missions in atmospheric

science have used this technology.

Both the microwave and the mid-infrared are very well studied, with a long heritage back to

the some of the original scientific missions flown on the first space launch missions. Many of

the modern techniques were first tested on a series of pathfinding instruments in the 1960’s and

1970’s as part of the Nimbus program. Two experiments in the Nimbus series did examine parts

of the FIR spectrum. The IRIS spectrometer had a low frequency cutoff at 400 cm−1; the ITPR

instrument used a 460–540 cm−1 channel (Atlas, 1969). The focus on meteorological missions

since that time however has focused on MIR spectral regions. The reasons for this shift are not

well documented, but are likely related to the relative advantage of using MIR photodetectors, as

described above. The initial FIR-sensitive instruments used pyroelectric and bolometric devices

as detectors; it is likely these were outperformed by MIR photodetectors. Since the primary focus

of meteorological missions since that time (e.g., TIROS and NOAA-POES) has been temperature

and water vapor sounding, the FIR spectral features can be viewed as redundant with the MIR

spectral features. Specifically, the sounding can be performed by measuring the long wavelength

side of the 15 µm CO2 band, and the water vapor rotational band (e.g., using the FIR), or using

the short wavelength side of the 15 µm CO2 band and the first vibrational-rotational band of water

vapor (e.g., using the MIR). With higher information content measurements, there are important

differences in the different spectral regimes, but for low spectral resolution measurements they are

roughly equivalent. Since a low-noise MIR detector is easier to construct, the MIR became the

primary spectral region for high spatial resolution sounding.

Thus, the FIR and submillimeter spectral regions represent a frontier in atmospheric remote

sensing. The submillimeter region has been the focus of recent research, as a new remote sensing

tool for characterizing ice clouds. Recently developed pathfinding instruments have been deployed

on aircraft in targeted field campaigns (Evans et al., 2005). Other research groups have proposed

new satellite missions based on this concept, in order to improve our global knowledge of ice cloud

properties, primarily focusing on the critical ice water path variable. (Buehler et al., 2007, 2012).
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Figure 1.2 A division of the longwave spectrum into microwave, submillimeter, FIR, and MIR

spectral ranges, with a linear frequency scale (top) and logarithmic frequency scale (bottom)
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Table 1.1 Spectral Region Definitions

Spectral region Frequency Range wavenumber range wavelength range

Microwave 3–300 GHz 0.1–10 cm−1 1 mm–10 cm

Submillimeter 0.3–3 THz 10–100 cm−1 0.1–1 mm

FIR 100–667 cm−1 15–50 µm

MIR 667–2500 cm−1 4–15 µm

In this work, the remote sensing potential of the FIR spectrum is studied. The FIR has unique

aspects that are of interest to atmospheric science, particularly how FIR radiation interacts with

water in all three thermodynamic phases. In particular, this dissertation focuses on the use of FIR

measurements for temperature and water vapor sounding, and ice cloud characterization. Using

various radiative transfer models, high spectral resolution measurements of the MIR and FIR up-

welling radiance are simulated and analyzed. The modeling framework allows the FIR information

content to be compared and contrasted with the MIR.
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Chapter 2

Background

2.1 A Brief Review of Infrared Satellite Sensors 1

Very early in the development of satellite technology, the possibility of using space based

platforms for remote sounding was an active subject of research. The first thorough documented

research in this area was from the Environmental Science Services Administration (ESSA) in the

United States during the 1960’s (Wark and Fleming, 1966; Hilleary et al., 1966; Wark et al., 1967).

The techniques used in these studies were similar to the original proposal by Kaplan (1959), where

the remote sounding would be done with several moderate spectral resolution (approximately 5

cm−1) measurements in the 667 cm−1 CO2 absorption band. The technique was demonstrated

with a balloon-borne instrument flight to simulate the satellite view.

These first demonstration studies led to further experiments on a series of research satellites in

the Nimbus program in the late 1960’s and early 1970’s. The Nimbus program served as a testbed

for many technologies that would form the core of the polar orbiting meteorological satellite sens-

ing program. Many different instrumentation techniques were attempted, the primary infrared

experiments being the Satellite InfraRed Spectrometer (SIRS), the Infrared Temperature Profiling

Radiometer (ITPR), and the InfraRed Interferometer Spectrometer (IRIS). SIRS and IRIS, both

flying on Nimbus-3, demonstrated the utility of IR radiances for characterizing the atmosphere.

SIRS was similar to the earlier demonstration instruments built by ESSA. This instrument had a

relatively coarse spatial resolution (100 km FOV) with a fixed nadir view, and 7 channels of 5

cm−1 resolution on the high frequency side of the CO2 band at 667 cm−1, and one window channel

1See Appendix A for a summary of all instruments mentioned in this section. Most references are omitted here

for brevity, and can be found in the Appendix.
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at 900 cm−1. IRIS was a Fourier transform spectrometer, covering 400–2000 cm−1 at a spectral

resolution of 5 cm−1. ITPR flew on Nimbus-5, and used a filter radiometer similar to SIRS with 7

spectral channels. Two of the CO2 sounding channels from SIRS were dropped and replaced with a

water vapor FIR channel at 500 cm−1, and a single channel at the higher frequency CO2 absorption

band at 2679 cm−1. The ITPR was also the first such instrument to implement crosstrack scanning

to gain better spatial coverage.

These early experimental instruments demonstrated the utility of spectral radiance measure-

ments for temperature and water vapor sounding, and cross track scanning to improve spatial

coverage. These experiments led directly into the development of operational instruments. The

primary operational instruments included the Vertical Temperature Profile Radiometer (VTPR),

the first operational sounding system on the Improved TIROS satellites, and the High resolution

InfraRed Sounder (HIRS) instrument, first flown on Nimbus-6 and then continued as part of the

operational TIROS Operational Vertical Sounding (TOVS) system on TIROS-N and later. The

HIRS has been a key instrument for infrared sounding, from 1978 until the present day.

The design decisions made for these instruments show several general principles related to

remote sensing of the atmosphere. The construction of a practical instrument must make certain

tradeoffs, and the result will be a balance between five competing design characteristics: spatial

coverage (i.e., crosstrack scanning versus nadir-only view), spatial resolution, spectral resolution,

spectral coverage, and noise performance. The design goals must be balanced within cost and

weight limitations for the satellite platform. Clearly if a certain noise performance is needed for

a particular measurement, this may limit the spatial or spectral resolution, since these both can be

tradeoffs with measurement noise (e.g., dividing the spectrum into finer spectral elements implies

a lower signal to noise ratio for each sample). As technology advances, improvements can be

made to any one of these aspects. Since the development of HIRS, there have been key improve-

ments to spatial and spectral resolution. With spatial resolution, the previous generation imaging

systems (e.g., the Very High Resolution Radiometer (VHRR) and Advanced VHRR (AVHRR)),

always had superior spatial resolution relative to sounding instruments (1 or 4 km, compared to 17
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km for HIRS). More recent technology applied in the MODerate resolution Imaging Spectrome-

ter (MODIS) has increased the spatial resolution (from 4 to 1 km), and drastically improved the

spectral coverage. Although MODIS is technically an imager, the spectral coverage is complete

enough to do limited temperature and water vapor sounding.

For instruments dedicated to sounding, the spatial resolution has not increased, but the spectral

resolution and coverage has increased dramatically with the deployment of high spectral reso-

lution cross track scanning spectrometers. These instruments include the Atmospheric InfraRed

Sounder (AIRS), a grating spectrometer with 0.4–2.0 cm−1 resolution; the Infrared Atmospheric

Sounding Interferometer (IASI), a Fourier transform spectrometer with 0.5 cm−1 resolution, and

the Cross-track scanning Infrared Sounder (CrIS), a Fourier transform spectrometer with 0.625

cm−1 resolution. All three instruments have similar overall spectral coverage (600–2500 cm−1),

with AIRS and CrIS having a few large gaps, and IASI covering the entire range. Broadly, these

instruments can be called “hyperspectral” infrared sounders, due to the high spectral resolution (≈
1 cm−1 or better), and high number of spectral samples (O(103) or more). The spatial resolution

is similar to HIRS (approximately 15 km), but represents a large improvement over the original

IRIS instruments (150 and 100 km), in addition to being cross track scanning. For the sounding

mission, the spectral coverage has also increased by the fact that the spectrometers cover wide

continuous swaths of the earth spectrum, rather than small targeted slices, as with HIRS. This in-

crease in spectral coverage brings in a wealth of additional information for very low marginal cost,

since by measuring the wide spectral swath, information about trace gas concentration, spectral

cloud properties, and spectral surface emissivity will be present in the spectrum at the same time

as the temperature and water vapor profile information. These different geophysical signals will

be discussed in more detail in the next sections.

2.2 Applications of IR Sounder Data

The state of the art hyperspectral infrared sounders have shown to have a wealth of information

about many geophysical properties. This section briefly reviews some of the literature documenting

retrievals in the hyperspectral era, with emphasis on areas where the FIR will be relevant.
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2.2.1 Sounding: measuring the vertical thermodynamic profile of the atmo-

sphere

The original purpose for these instruments was to produce soundings of the temperature and

water vapor profile. The satellite platform gives coverage in poorly instrumented areas, such as

ocean basins or remote land areas. Soundings in these areas have a substantial impact on numeri-

cal weather prediction (NWP) models. The additional information in hyperspectral measurements

has greatly increased the vertical resolution of the retrieved profiles, as well as reduced the re-

trieval error. At hyperspectral resolution, individual strong absorption lines can be resolved. This

improves vertical resolution by introducing a wider range in weighting function altitudes, as well

as sharpening individual weighting functions. One of the first studies comparing a low spectral

resolution sounding measurement to a hyperspectral measurement compared HIRS to simulated

Fourier transform spectrometer measurements (Purser and Huang, 1993), and showed an effective

increase in data density of a factor of 2–3 along the full vertical profile. Similarly, retrieved profiles

from HIRS data showed errors of approximately 2–2.5 K for clear sky soundings, (Susskind et al.,

1984) and the hyperspectral measurements from AIRS show a reduction to 0.75–1.25 K, when

comparing to independent “truth” measurements such as radiosondes (Susskind et al., 2006). The

increased information also shows a positive impact on Numerical Weather Prediction (NWP) mod-

els (Hilton et al., 2009). The design goal of AIRS and other hyperspectral sounders is typically on

the order of 1 K error, with a vertical resolution of 1 km; this is achievable in good conditions, but

errors tend to increase over land where surface emissivity varies (Divakarla et al., 2006).

The total information content for water vapor tends to be somewhat lower. Humidity profiling

from TOVS has enough information to profile on five broad layers, with pressure levels at 100, 300,

500, 700, and 850 hPa, with the last level at the surface (Chaboureau et al., 1998). For the AIRS

retrievals, the number of layers in the standard retrieval is increased to 9, and shows an accuracy

of up to 15% for clear conditions (Susskind et al., 2003, 2006), and 20%–40% when compared

globally over all conditions where retrievals can be made (Divakarla et al., 2006).
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2.2.2 Cloud Property Retrieval

Macrophysical cloud properties, such as cloud altitude (directly related to temperature), cloud

fraction, and optical thickness, were not typically viewed as primary retrieved parameters from

IR sounders, but it was known that some method to constrain these values would be required for

successful thermodynamic profile retrievals. The temperature retrieval algorithms applied to the

first experimental sounders (Smith et al., 1970; Chahine et al., 1977) had corrections for cloud

effects, but typically the “retrieved” cloud properties were not utilized. Since these instruments

typically had large footprints (∼ 102 km), the estimated cloud property represented some effective

averaged quantity over the large area. Later instrumentation with much better spatial resolution,

such as HIRS (∼ 10 km), led to useful retrievals of these global cloud properties (Wylie et al.,

1994).

Thermodynamic phase is also retrievable in the MIR due to the different shape of the spectral

index of refraction for liquid water and ice. The primary feature is the increase in the imaginary

part as the wavenumber decreases from 1000 cm−1, which implies a drop in the in single scat-

ter albedo of cloud particles. The slope is very different in liquid water versus ice. The spectral

change in refractive index also implies a spectral change in the extinction efficiency. The bulk op-

tical properties of a cloud layer will then have spectral features, dependent on the thermodynamic

phase, that can be exploited by remote sensing techniques. The cloud could exhibit relatively more

scattering, or relatively higher optical depth, across a pair of selected wavenumbers, which in turn

may show a measurable brightness temperature difference. “Split window” approaches based on

these principles can be used to determine phase in low spectral resolution measurements, since

the variation of the index of refraction is slow (Figure 2.1), with features spread over ∼ 102 cm−1

(Strabala et al., 1994; Baum et al., 2000).

More recent research has involved retrieval of the basic microphysical quantity, particle effec-

tive size, both from TOVS and hyperspectral IR measurements (Stubenrauch et al., 1999; Zhou

et al., 2007). Because the spectral variation of cloud properties is much smoother than gas ab-

sorption lines, the high spectral resolution does not improve the retrieval nearly as much as for

temperature and gas profile retrieval. At the same time, cloud spatial variation can be much more
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dramatic than the spatial variation of absorbing gas species. Thus, retrievals from multiband im-

agers that leverage high spatial resolution (Inoue, 1985; Parol et al., 1991; Heidinger and Pavolonis,

2009), may outperform methods based on hyperspectral measurements due to the relatively poor

spatial resolution of the hyperspectral sounder. Knowing the cases where each sensing method is

more optimal is an active area of research, and retrievals that utilize both measurements should

yield a superior result (Li et al., 2005; Nasiri et al., 2011).

2.2.3 Trace Gas Retrieval

Another significant impact of hyperspectral measurements is the ability to retrieve numerous

gas species other than water vapor. These trace gas retrievals are impossible from the lower spec-

tral resolution measurements, since the detection may rely on only a small number of individual

absorption lines that are lost within the wider spectral band pass. For many trace gases, the infor-

mation content in a cross track scanner may be fairly low, only allowing an estimate of total column

amounts, because the total optical depth in the full atmosphere column may be too small. Profiling

a particular gas requires a wide range of total optical depths, in order to produce weighting func-

tions at different altitudes, which may not be physically possible for lower concentration species.

Missions with the primary purpose of measuring trace gases are often limb sounders for this rea-

son (for example, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on

EnviSat). AIRS has shown useful information for O3, CH4, CO, and SO2 (Chahine et al., 2006).

IASI has continuous spectral coverage (650–2700 cm−1) over wavenumbers where the AIRS has

gaps, and superior spectral resolution in some bands (0.625 cm−1 over the whole spectrum, in con-

trast to AIRS which has a resolution of ∼ 2 cm−1 in the highest wavenumber bands). With these

new capabilities, IASI can detect all trace gases that are detected by AIRS as well as a number

of additional gases. The list of documented detections of trace gases in IASI includes N2O, NO2,

HNO3, HCOOH, CH3OH, and NH3, as well as the water isotope HDO (Hilton et al., 2011).
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2.2.4 Surface Emissivity

In low spectral resolution measurements, the surface emissivity can not be decoupled from

the surface temperature. Hyperspectral measurements offer a key advantage by adding enough

spectral information to enable retrieval of the surface spectral emissivity. (Knuteson et al., 2004a;

Li and Li, 2008; Capelle et al., 2012). Many of the same considerations for clouds apply, namely

that surface emissivity over land can have a large spatial variation that is not well sampled by the

typical resolution of an infrared sounder. On the other hand, spectral variation of emissivity can

be more complex than cloud properties, so the higher spectral resolution can be more useful for

surface emissivity. Accounting for the surface emissivity spectral variation is also an important

consideration for cloud property retrieval in window regions of the infrared spectrum, since errors

in each can introduce bias errors in the other if not properly handled.

2.3 Key material properties in the FIR and relationships to remote sensing

2.3.1 Water Vapor absorption

The FIR water vapor absorption consists of the rotational mode absorption lines and contin-

uum absorption. The rotational absorption band has the lowest energy, since no vibrational mode

is excited. Thus the transition energies are small, and this band continues well into the microwave

region. The peak line intensities are highest in this band, relative to any other vibrational-rotational

absorption band (e.g., the first such band centered at 6.3 µm wavelength, or higher order transi-

tions at shorter wavelengths) (Harries et al., 2008). The highest altitude weighting functions for

upwelling radiance should appear in the FIR due to the increased line strengths.

The water vapor continuum absorption is still not fully explained in a firm theoretical frame-

work, and has been described as caused by dimer interactions between two water vapor molecules,

or due to subtle shape distortions to the Lorentz profile wings of the numerous absorption lines.

Regardless of the physical basis, the semi-empirical method in the CKD and MT CKD contin-

uum models has been able to model the continuum shape quite well, by decomposing the total

absorption into line contributions, and a smoothly “self” and “foreign” continuum (Clough et al.,
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1989; Mlawer et al., 2012). The line contributions are defined to be Voigt functions within 25

cm−1 of either side of the line center, where the absorption coefficient is forced to zero at the ±
25 cm−1 points. Any residual absorption in the far wings of the line, or within the “basement”

term in the center ± 25 cm−1 is then added into the continuum (Turner and Mlawer, 2010). The

two continuum absorption components respond differently to pressure and water vapor density,

so by modeling the components separately, they can have independent coefficients and scaling

exponents. The so-called “self” continuum is proportional to the square of the water vapor den-

sity, while the “foreign” component scales linearly with water vapor density. The strength of the

continuum absorption is highest in the FIR. All other factors being equal, the higher continuum ab-

sorption will tend to increase the weighting function altitude for the upwelling radiance weighting

functions.

Earlier work involving sensitivity analysis of the IR spectra to perturbations in the water vapor

concentration show the impact of the increased absorption. The magnitude of the water vapor

Jacobian is stronger in the FIR water vapor rotational band by as much as a factor of 6 (Rizzi et al.,

2002). However, this previous analysis does not consider any realistic impacts of sensor noise,

spectral sampling, or correlation in spectral signatures, so the results are difficult to interpret in

terms of actual retrievable water vapor profile information in a realistic measurement.

Validation of water vapor spectroscopy is an ongoing research effort. Both the line and contin-

uum properties must be known as accurately as possible, since any errors can introduce bias into

the retrieved profiles. Radiance closure studies have led to significant improvement in the water

vapor absorption line properties as well as the continuum absorption using MIR measurements

(Revercomb et al., 2003; Turner et al., 2004). More recent field campaigns have extended the ap-

plicability of these closure experiments, by collecting data in extremely dry conditions in order to

measure farther into the FIR region where the line and continuum absorption strengths are higher

(Turner and Mlawer, 2010). These new FIR measurements will lead to further refinement of water

vapor spectroscopy.



16

2.3.2 Blackbody Peak Radiance and Spectral Cooling

An important aspect of FIR emission is the fact that the relative intensity of the blackbody

curve is more strongly peaked in the FIR for cold atmospheric temperatures. Coupled with the fact

that the water vapor absorption is stronger in the FIR relative to the MIR leading to higher alti-

tude weighting functions, the majority of the upper atmosphere cooling to space occurs in the FIR

region. From a remote sensing perspective, this implies a higher effective Signal to Noise Ratio

(SNR) for retrieving geophysical information from the upper atmosphere water vapor emission,

assuming constant measurement noise across the spectrum. Figure 2.2 shows the ratio between

spectral radiance from a blackbody for various temperatures spanning the approximate range ob-

served in the troposphere. Each curve is divided by the radiance from a T = 300 K blackbody. The

significant radiance reduction in MIR wavenumbers is readily apparent, especially in the impor-

tant wavenumber range for water vapor sounding in the upper troposphere (approximately 100–500

cm−1 for the FIR and 1250–1750 cm−1 for the MIR). For those ranges, the radiance at T = 200 K

drops to approximately 40% (FIR) and 4% (MIR) of the the radiance at T = 300 K.

More detailed calculations were documented in Kratz (2002) using high spectral resolution ra-

diative transfer codes. In clear sky conditions, the fraction of total outgoing longwave flux below

650 cm−1 ranges from 42.1% for the standard tropical atmosphere, to 53.7% in the standard sub-

arctic winter atmosphere2. Limiting the calculation to consider only the flux from the atmosphere,

these fractions increase to 51.1% and 75.5% for the two atmospheres, as a consequence of the

emission peak favoring FIR wavenumbers for the colder troposphere temperatures where most of

the atmospheric emission to space occurs. Finally, the spectral cooling rate calculations of Clough

and Iacono (1995) show a strong maximum in spectral cooling in the FIR wavelengths through the

mid and upper troposphere from water vapor emission lines. The cooling rate profile couples the

radiative emission processes to dynamical processes, adding to the importance of accurate water

vapor spectroscopy. General circulation models (GCMs) must include accurate parameterizations

of these longwave radiation processes in order to produce useful simulations of climate. In the

2Note that this is slightly below the FIR boundary convention in this research (667 cm−1) but the affect on these

calculations should be small.
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subtropics, for example, the clear sky radiative cooling is largely balanced by subsidence, so in

this regime the cooling rate is directly tied to the large scale vertical motions in the atmosphere.

2.3.3 Ice and Water Index of Refraction

The spectral index of refraction for ice changes substantially in the FIR relative to the MIR

(Figure 2.1). The imaginary part drops to a minimum around 400 cm−1, while the water imaginary

part stays elevated. Ice particles will then have much higher single scatter albedo, and cloud

layers with ice will show much more scattering than water clouds. This spectral feature allows for

sensitive phase detection beyond the MIR split window approaches (Rathke et al., 2002; Turner,

2005).

Phase determination is beyond the scope of this work, but the properties of ice clouds will

be studied in detail in Chapter 5. The scattering maximum at 400 cm−1 is a key feature for re-

mote sensing of cloud microphysics, since it introduces measurable changes in the bulk optical

properties of ice clouds. Several papers have investigated this feature for ice cloud properties,

using simplistic brightness temperature difference (BTD) measurements. BTD measurements are

the typical starting points for split-window cloud property retrievals using bi- or tri-spectral mea-

surements from moderate resolution infrared images (Strabala et al., 1994; Baum et al., 2000;

Heidinger and Pavolonis, 2009), so these studies could be viewed as a motivation for adding an

FIR channel to these types of instruments. In Yang et al. (2003), BTDs are simulated for a variety

of cloud thicknesses in several standard atmosphere profiles. Large sensitivities are shown for a

variety of cloud parameters, including very high optical depth clouds.

Another sensitivity study, based on spectral radiance differences rather than BTD (Baran,

2007), shows that FIR spectra can be sensitive to a number of important microphysical proper-

ties, such as particle effective diameter, Particle Size Distribution (PSD) shape, crystal habit, and

vertical inhomogeneity within the cloud layer. The study is focused on sensitivity only, not retriev-

able information, so no consideration is made for sensor characteristics (other than a wavenumber



19

coverage to match a particular FIR research instrument, the Tropospheric Airborne Fourier Trans-

form Spectrometer (TAFTS)), or correlation between spectral signatures. The analysis is also done

only for a single macrophysical layout, namely a cloud with unit optical depth at z = 9.8 km.

2.3.4 Trace Gases

The information content for trace gas retrieval in the FIR is not well known. The FIR will

probably not be as important for trace gas retrieval, as many species do not have a strong rotational

band in the FIR (water vapor being the exception), and their strong rotational lines typically occur

at lower frequencies (e.g. submillimeter or microwave). The lowest energy vibrational band typi-

cally occurs in the MIR. A simple visualization of the HITRAN database is shown in Figure 2.3,

where the line intensities are multiplied by the column density in the US Standard Atmosphere

to give the total line optical depth. In order to thin the data, the HITRAN data is grouped into 5

cm−1 spectral intervals, and only the strongest line for each species is displayed in the plot. The

primary infrared absorbers water vapor, CO2 and O3 are ignored, and only species with at least one

retained line with an optical depth greater than 10−3 are plotted. The most important trace gas in

the FIR is N2O, with a fairly strong absorption band (peak τ ≈ 0.1) at 550 cm−1. The only other

species with lines over 10−3 in optical depth in the FIR are HF, HCl and NH3 with a few weak

(τ ≈ 3 × 10−3) lines below 300 cm−1. In fact, the lack of trace gas absorption can be a benefit to

water vapor profile retrieval, since the water vapor signature is cleaner due to lack of interfering

absorption lines. A detailed analysis of trace gas retrieval is beyond the scope of this work, so

trace gases will not be discussed further, other than in reference to interference with water vapor

absorption features in Chapter 4.

2.3.5 Surface Emissivity

Because of the high opacity of the water vapor rotational absorption band, the surface is not

usually detectable within the FIR, except in cases of low water vapor column amounts. The state

of knowledge for FIR spectral emissivities for natural surfaces is basically non-existent, except

for measurements of mineral properties used in planetary geology. To support remote sensing of
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mineral distributions on the surface of Mars, laboratory measurements were made of many mineral

and rock surfaces (Christensen et al., 2000). These reference spectra were used in the exploitation

of THEMIS data (Christensen et al., 1992), a moderate resolution (5 cm−1) interferometer covering

the spectral range 200–1600 cm−1. The laboratory data show that there is likely as much variation

in the surface spectral emissivity in the MIR window due to land surface changes (e.g., rock or

soil types), since there are strong features in the FIR correlated to features that are prevalent in

global surface emissivity databases for MIR spectra (Seemann et al., 2008). Figure 2.4 shows

the leading principal components of the global emissivity database, with two emissivity spectra

from laboratory measurements of quartz and serpentine, two common minerals. The features at

1000–1200 cm−1 in the mineral spectra are seen in the Principal Components (PC) from the global

database, which suggests that these features in the PC spectra are likely due to the same minerals.

This would suggest the strong emissivity features in the FIR seen in the mineral spectra may be

important for any FIR remote sensing in dry atmospheres where the surface is detected.

2.4 Future Directions

The infrared sounder has been a critical part of the overall earth observing system for many

decades, and over time the number of applications for the data continues to grow. Sounders will

continue to be a key component for the foreseeable future, and they will likely be enhanced in

capability in a number of ways. For the operational sounder, where the instrument design can have

a lifetime measured in decades (over multiple constructed examples), the current EUMETSAT

and NOAA designs for polar orbiters (IASI and CrIS) are in the middle and beginning of their

lifetimes, respectively, so there is no concrete design for the next generation sounder. The follow-

on EUMETSAT system, IASI-NG (Next Generation), is in design phase. The current instrument

plan includes higher spectral resolution and lower sensor noise, but uses the same spectral coverage

(Crevoisier, 2012).

There are several promising directions for hyperspectral instrumentation development on geosyn-

chronous satellites, such as the infrared sounder on the third generation MeteoSat (Stuhlmann et al.,
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from the emissivity library in Seemann et al. (2008) that describes a global emissivity distribution

for remote sensing applications in the MIR. Bottom figure: laboratory emissivity spectra of quartz

and serpentine from Christensen et al. (2000), showing strong features in the MIR and FIR.
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2005), or potential missions based on the Geosynchronous Imaging Fourier Transform Spectrom-

eter (GIFTS) instrument (Elwell et al., 2006). This would follow the pattern of the sounding

technology in operational use on polar platforms for some length of time before transitioning to a

geosynchronous platform.

Another possible route would be to expand spectral coverage again, by pushing the spectrome-

ters to measure lower frequencies, and cross into the FIR region. The original IRIS instrument did

observe frequencies as low as 400 cm−1, but the current hyperspectral instruments all have a cutoff

at about 650 cm−1. The focus of this dissertation is to explore what advantage could be realized by

extending the IR sounding measurement into the FIR, to a low cutoff wavenumber of 100 cm−1.

The information content for cloud microphysical property and sounding – both temperature and

water vapor – is studied, using high accuracy forward models and physical retrieval frameworks.

2.5 Summary

This chapter gave a brief history of passive IR sounding systems from satellites, showing the

push toward higher spatial resolution and spectral coverage among imaging systems, and the dra-

matic increase in spectral resolution among sounding instruments. The key applications of hy-

perspectral IR sounders were reviewed. Unique material properties in the FIR were discussed,

focusing on water vapor absorption characteristics, and ice spectral index of refraction. These

unique FIR properties affect thermodynamic profile and ice cloud property retrievals. The follow-

ing chapters form the core of this thesis. First, in Chapter 3, the retrieval algorithms, radiative

transfer models, and other modeling framework details are described. In Chapter 4, the thermody-

namic profile retrieval problem is investigated, by computing the information content using hyper-

spectral measurements of the upwelling MIR and FIR spectra. In Chapter 5, the work is extended

to include layer ice clouds, to investigate the impact of the FIR ice scattering properties. Finally,

in Chapter 6, some applications of FIR radiative transfer and remote sensing are described, along

with a brief summary of prospects for future research in this area.
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Chapter 3

Methods1

This work uses the well known Optimal Estimation (OE) (Rodgers, 2000) algorithm to solve

the inverse problem of retrieving geophysical data from infrared radiance spectra. In this chapter,

the OE mathematical framework is first reviewed. Once the mathematical quantities are defined,

the specific implementation details are described. First, the forward models are discussed, followed

by specific details of various components such as assumed priors and sensor characteristics. When

possible, framework is applied in an identical manner to both the clear sky and cloudy conditions.

Differences between the clear sky and cloudy calculations are noted.

3.1 Algorithms

3.1.1 Optimal Estimation (OE)

Optimal Estimation is a Bayesian solution to the inverse problem. OE produces the maximum

likelihood solution under the assumptions that the forward model is linear and the error covariances

have Gaussian probability distribution functions. The method has many useful properties for the

inverse problem at hand, such as the ability to quantify the prior knowledge used in the retrieval;

calculation of error estimates on the final solution; and robustness to measurement errors. The

disadvantage is mainly the computational expense. In some cases the requirement of prior infor-

mation can be a disadvantage if such information is difficult to obtain. Highly nonlinear models or

1Portions of this chapter were published in Merrelli and Turner (2011) and are copyright of the American Meteo-

rological Society.
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non-Gaussian error covariances may be unsuitable for OE as these can introduce large bias errors

in the solution.

The OE method can be defined with the following terms, which follow the notation used in

Rodgers (2000). Given am-dimensional measurement vector y and a n-dimensional state vector x,

the two spaces can be related via a function F , the “forward model”, with error ǫ from measurement

uncertainty and forward model errors. Typically this is expressed relative to a specific state vector

value, x0, and the forward model evaluated at that state vector value, F (x0):

y − y0 = F (x)− F (x0) + ǫ (3.1)

The expression can be linearized by replacing the function with its Taylor expansion and retaining

only the linear term. The linear term contains the first derivative of the forward model, the Jacobian

matrix (Ki,k = ∂Fi/∂xk). The linearized forward model equation using the Jacobian matrix can

be written as

y− y0 = K(x− x0) + ǫ + (higher order terms) (3.2)

If the prior covariance for the state vector (Sa) and the error covariance (Se) are both known, then

the OE solution for the linear case can be expressed as

x̂ = x0 +
(

KTS−1
e K+ S−1

a

)

−1
KTS−1

e [y − F (x0)] (3.3)

where the solution x̂ is called the “state estimate” for the observation y. In this equation, the error

covariance Se includes the measurement noise for the instrument measuring y and some estimate

of the error in the forward model. Since these two covariances would be added together to form Se

in the cases where model error is included, the error covariance could be split into two terms:

Se = Sy + SF (3.4)

where Sy represents the covariance of the measurement noise, and SF represents the covariance of

the model error.

The measurement noise is usually obtained by an independent method, for example calibra-

tion data collected by the instrument independently from the observation y. The model error is
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typically much more difficult to characterize, since it includes errors due to missing or unknown

physics relevant to the prediction of the measurement from the given state vector. Some model er-

rors may have quantified uncertainties. For example, absorption line widths or center frequencies

may have measured or estimated uncertainties. In most cases with real data these model errors

will be unquantified, since the errors will be due to unaccounted physical properties. Examples in-

clude three dimensional scattering effects in cloud fields represented by a one dimensional forward

model, or unaccounted aerosol layers in a clear sky radiance simulation. In many cases the model

error is assumed to be a constant additive variance (uncorrelated noise) (Zhou et al., 2007).

Since this research uses the independent pixel assumption, and a forward model that describes

clouds as homogeneous layers, the important model errors will likely be three dimension cloud

scattering effects as well as multiple layer and subpixel cloud fraction effects. These effects are

beyond the scope of this research, but it should be noted that this is an active area of research

within the larger community (Kahn et al., 2011). However, within the framework used in this

research, since the same forward model used in the OE algorithm is the same forward model used

to simulate measurements, the model error component SF is zero. This is sometimes called the

“perfect model” condition. In some specific test cases in Chapter 4 a model error will be simulated

by including a difference between the model that simulates the measurement and the model that

is used inside the OE retrieval to compute F (x) and K. In those specific cases, the perfect model

condition will not be applicable.

To extend the linear solution to nonlinear problems, the linear equation can be applied in an

iterative algorithm. The state estimate and Jacobian are recomputed at each iteration:

x̂i+1 = x0 +
(

KT
i S

−1
e Ki + S−1

a

)

−1
KT

i S
−1
e [y − F (x̂i) +Ki(x̂i − x0)] (3.5)

In this equation Ki represents the Jacobian computed at the state estimate x̂i. The iteration con-

tinues until some exit criterion is reached. In this work, the exit criterion is based on the change in

the state estimate compared to the size of the posterior error. Using the definition of the posterior

error, Ŝ, the change in state estimate is scaled and compared to 0.1 N . This threshold is similar to
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a 0.1 σ threshold for a scalar random variable, but generalized to N-dimensional state space:

Ŝ−1 = KT
i S

−1
e Ki + S−1

a

0.1 >
1

N
(x̂i+1 − x̂i)

T Ŝ−1(x̂i+1 − x̂i) (3.6)

This nonlinear form of OE, Newton’s method, is used for all retrievals. An implicit assumption

must be made that the prior and measurement covariances are Gaussian, and that the forward model

is “mildly nonlinear” (Rodgers, 2000). These assumptions are difficult to verify in practice, and are

beyond the scope of this research. Instead, it will be noted that the method has been successfully

applied to numerous data sources in atmospheric science, including infrared sounding instruments

(for example, TOVS (Eyre, 1989), IASI (Carissimo et al., 2005), and AERI (Turner, 2005)).

3.1.2 OE Based Metrics

There are three important intermediate matrices computed in the Bayesian solution which are

used throughout this research to quantify various aspects of the retrieved state estimate. These

matrices are Ŝ, the posterior state covariance; G, the gain matrix, or the generalized inverse of K;

and A, the averaging kernel matrix.

Ŝ =
(

KT
i S

−1
e Ki + S−1

a

)

−1
(3.7)

G =
[

(

KT
i S

−1
e Ki + S−1

a

)

−1
KT

i S
−1
e

]

= ŜKT
i S

−1
e (3.8)

A =
[

(

KT
i S

−1
e Ki + S−1

a

)

−1
KT

i S
−1
e

]

Ki = GKi (3.9)

The posterior state covariance represents the uncertainty of the state estimate after exploiting

the information contained within the measurement. Measurements with low uncertainty should

shrink the volume of the prior state covariance substantially, so that the posterior state covariance

will cover a much smaller volume in state space. The amount of reduction can be examined by

simply looking at the square root of the diagonal, to get effectively a 1-σ uncertainty level on the

state estimate, and comparing this to the 1-σ uncertainty in the prior covariance. Correlated error

in the state estimate would be ignored by this simple method, but it has the advantage of describing

the error in a simple way in terms of physical units.



28

The Shannon information content, H , is related to the posterior and prior state covariances

through the relation

H = −1

2
ln
∣

∣

∣
ŜS−1

a

∣

∣

∣
(3.10)

Because the posterior covariance always describes a smaller volume of state space, the sign conven-

tion implies H is a positive quantity. In an approximate sense, H represents the reduction in state

space in the posterior relative to the prior. The determinant of a covariance matrix is sometimes

called the “generalized variance” since it represents the volume of the associated error distribution.

If the covariance matrices are of full rank, H can be rewritten in a form that suggests an analogy

to the scalar signal to noise ratio:

H = −1

2
ln
(∣

∣

∣
Ŝ

∣

∣

∣

∣

∣S−1
a

∣

∣

)

= −1

2
ln





∣

∣

∣
Ŝ

∣

∣

∣

|Sa|



 (3.11)

The averaging kernel describes the amount of correlation between state vector components.

By approximating y with the linearization of F , y = K(x − x0) + F (x0), replacing this term

in equation 3.3 and rearranging, the following expression relating the true state x and the state

estimate x̂ is obtained:

x̂− x0 = A(x− x0) +Gǫ (3.12)

This equation gives several perspectives on the action of A on the true state x. Considering

a δ-function like true state (meaning, the true state differs from x0 at only one state variable xk),

then column of A at this index k represents the response in the state estimate. The response will

be smeared out according to the correlation to other state variables, which arises from correlation

inherent in the assumed prior covariance and in the character of the measurement as described by

K. For a general true state, the response in the state estimate for state variable k will be the scalar

product between the corresponding row of A and the true state x − x0. The rows can be thought

of as “averaging kernels”, since the kth element in the state estimate represents an average over

multiple elements in the true state, according to the kth row in A. The summed elements across

the kth row also gives an indication of the relative weight of the prior state and measurement

in the calculation of the state estimate. A row sum near zero indicates that the corresponding
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state variable estimate x̂k will tend to be equal to the prior mean value x0,k, regardless of the

measurement. This indicates that the measurement is not sensitive to that state variable either

directly or through any correlation implied by the prior covariance.

Examining the rows of A in cases where the state vector represents a vertical thermodynamic

profile shows important information about the effective vertical resolution of the state estimate.

One easy way to represent this resolution is to calculate the Full Width, Half Maximum (FWHM) of

the averaging kernel. Simple linear extrapolation between points in the averaging kernel produces

an estimate of FWHM that is not quantized by the level grid in the state vector. Figure 3.1 shows

such a calculation for an averaging kernel for water vapor and temperature profiles. For cases

where the state vector is not a vertical profile, the averaging kernel will represent the amount of

correlation between different variables in the state estimate.

The other key metric related to the A matrix is the Degrees of Freedom for Signal (DFS).

The DFS is equal to the trace of A. It represents the amount of independent information in the

state estimate that comes from the measurement vector. For profile retrieval, this quantity can be

considered as an estimate of the number of retrievable vertical levels in the measurement. In this

research, the DFS will be the preferred metric, rather than the Shannon information content H .

The aim of OE is to obtain an averaging kernel that is as close to the identity matrix as possible,

while reducing the effect of measurement error through the term Gǫ. A tradeoff is made between

reducing the amplitude of the error in the state estimate, and improving the resolution or reducing

correlation in the state estimate. The OE framework as described here allows this tradeoff to be

made by selection of different prior covariances. High amplitude, uncorrelated prior covariances

tend to reduce correlation and increase resolution in the state estimate, at the cost of increased error

and potential instability in algorithm convergence. Lower variance, higher correlation priors will

reduce noise but produce higher correlation and lower vertical resolution in the state estimate.

3.1.3 OE Channel Selection

The same OE mathematical framework can also be used to optimally select a subset of the

full hyperspectral channel list. Two approaches based on Rodgers et al. (1996) can be used. For
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the first method, the DFS of each channel is computed directly. The first channel is selected by

looping over all m channels, computing the DFS for each individual channel, and selecting the

maximum. The posterior covariance is computed with an alternate form that is computationally

simpler for this algorithm. It involves inverting a square matrix of size equal to the number of

selected channels (s), and requires one less matrix inversion than the form in equation 3.5. For the

cth channel,

Ŝc = Sa − SaK
T
c

(

Se,c +KcSaK
T
c

)

−1
KcSa (3.13)

Ac = ŜcK
T
c S

−1
e,cKc (3.14)

where the term Kc refers to the single row vector from K for channel c, and Se,c refers to the

variance of channel c (a scalar). The subscript c on the posterior covariance signifies that this is

the posterior related to that specific channel. The DFS is computed normally (trace(Ac)), and the

channel with the maximum DFS is selected. Later channels are selected in the same manner. First

the matrix Ks, is created, containing the rows of K for the s already selected channels. This matrix

is augmented by adding one additional row corresponding to one channel from the remainingm−s
unselected channels. A similar operation constructs the covariance Se,s, which is then augmented

by one of the remaining m− s unselected channels. This produces an array of m− s DFS values,

as the calculation is repeated for each of the m− s channels. Subtracting the DFS value from the s

already selected channels yields the increase in DFS by adding any one of the unselected channels,

though this is not needed for the channel selection step as the maximum DFS or maximum DFS

increment would produce the same selection.

This approach works for any form of Sa or Se, but is quite time consuming due to the nested

loops (looping over m − s channels for each selection of the s desired channels) and the matrix

inversion at each iteration. The second approach is more computationally simple but requires that

the error covariance Se is diagonal. By first pre-scaling K by Se and Sa, yielding K′,

K′ = S−1/2
e KSa

1/2 (3.15)
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then the DFS added by channel c, δDFSc, after a selection of s channels becomes a simple scalar

vector product (Rodgers et al., 1996):

δDFSc =
(Ŝsk

T
c )

T (Ŝsk
T
c )

1 + kcŜskT
c

(3.16)

where Ŝs is the posterior state covariance including the already selected s channels, and kc is the

row from K′ for channel c, which is under consideration for selection as channel s + 1. After

this product is computed for all possible m− s channels, the channel with the maximum δDFS is

selected, and the posterior state covariance is updated to include the newly selected channel:

Ŝs+1 = Ŝs
I− kc(Ŝskc)

T

1 + kT
c Ŝskc

(3.17)

The optimized second approach is used where possible, which depends on whether a diagonal

matrix is assumed for Se.

Regardless of which calculation is used, the iterative selection algorithm is typically run until

some desired fraction of the total DFS is reached. A single DFS calculation over the entire channel

set is performed first, so then the running total DFS over the s selected channels can be converted

to a DFS fraction. Because of the optimal selection, the majority of the total DFS (> 90%) can

typically be reached after selecting approximately 20% of the channels.

3.2 Forward Models

3.2.1 LBLRTM

The Line-By-Line Radiative Transfer Model (LBLRTM, Clough et al. (2005)) is a well vali-

dated model developed at Atmospheric and Environmental Research (AER). This work uses ver-

sion 11.6 and 11.7 of the model; the differences between the models do not significantly impact this

study. Most changes occurred in the high wavenumber end of the spectrum (above 2000 cm−1).

Some water vapor absorption lines in the wavenumber range 400–2000 cm−1 were modified, but

these changes were minor and result in maximum changes of 0.05 K brightness temperature for

a standard tropical atmosphere. The LBLRTM is used to compute the radiance for all clear sky
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cases. It has the added capability to compute analytic Jacobians for surface temperature, emis-

sivity, profile temperature, and concentrations profiles of any of the absorbing gas species used in

the calculation. The line absorption data is derived primarily from HITRAN2004 (Rothman et al.,

2005), with various updates to certain line data as determined by AER. In addition, LBLRTM al-

lows for a Instrumental Line Shape (ILS) to be applied to the monochromatic simulated radiance,

to produce a simulated observation from a specified Fourier transform spectrometer with one of a

number of possible ILS functions. In all simulations, the top 7 HITRAN molecules are used. In

order, these are: H2O, CO2, O3, N2O, CO, CH4, and O2.

3.2.2 LBLDIS

The LBLDIS (LBLrtm DISort) model (Turner, 2005) is used to compute all radiances and Jaco-

bians for cloudy sky profiles. LBLDIS uses gaseous optical depth data computed from LBLRTM to

describe the spectral absorption due to gas absorption lines. This optical depth data is computed at

monochromatic resolution by LBLRTM, and averaged within spectral increments by LBLDIS. The

layer-to-instrument transmittance is computed at the monochromatic resolution, and then averaged

within the defined spectral increments. The averaged transmittance is then converted back to an

effective layer optical depth within the coarse spectral grid. LBLDIS uses DIScrete Ordinate Ra-

diative Transfer (DISORT, Stamnes et al. (1988)) to compute the scattering and absorption through

a cloud layer embedded within the atmosphere profile. The LBLDIS expects an input scattering

property database which describes the bulk scattering of the cloud particles, meaning the various

scattering parameters (single scatter albedo, phase function, extinction efficiency) should represent

the size distribution weighted quantities.

Each layer cloud is defined at one vertical level. The cloud particles are assumed to be vertically

homogeneous within the layer that contains the input cloud level, where the layering is defined by

the pre-computed LBLRTM gaseous optical depth. For example, if the LBLRTM optical depth is

computed on a layer grid defined by levels every 1 km from the ground level, placing a cloud at z

= 4.5 km above ground in LBLDIS implies a 1 km thick, homogeneous cloud layer defined by the

levels at z = 4 km and z = 5 km.
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A spectral grid consisting of a constant spectral increment between start and stop wavenumber

is used for all LBLDIS calculations. As long as the spectral grid is not too coarse, the resulting

spectrum should approximately represent an interferometer with a rectangular ILS function.

3.3 Framework Details

In Section 3.1.1, the key input terms in the OE mathematical framework are defined: the state

vector x, the prior state xa and its covariance Sa, the forward model F (x) and its Jacobian K(x),

the measurement covariance Sy, and the model error SF . In this section, each of these terms is

described in detail in their usage and application in the present study.

3.3.1 State Vector

The state vector contains all geophysical parameters that will be retrieved in the OE algorithm.

For the clear sky problem, this vector contains the surface temperature, profile temperature, and the

logarithm of the concentration of any gas absorbers that are included in the retrieval. The logarithm

of the concentration is used because the effect of gas absorption on simulated radiance is closer to

a logarithmic rather than linear variation. In addition, the profile variation of some species (water

vapor in particular) covers many orders of magnitude, so for numerical issues it is preferable to

reduce the range in values covered by the state vector by using the logarithm.

Since the thermodynamic and gas concentration profiles are physically continuous variables,

there is freedom to select the level grid for the state space vector (the “design points”). The pri-

mary a priori data sources for the prior profiles are the radiosonde climatologies described in the

next section and the standard atmosphere profiles (Anderson et al., 1986). The vertical sampling

grid in radiosonde profiles is irregular due to the random nature of the balloon ascent. The vertical

resolution is also very high, with spacing between samples of order 10–100 m. Each profile is

initially interpolated onto a common grid with 20 m vertical spacing to facilitate processing. This

is far too high a vertical resolution for the design point selection, partly because of computational

limitations within the forward model (LBLRTM is limited to < 200 layers), and partly because the
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vertical resolution of the retrieval itself is poor relative to the radiosonde data. Applying the infor-

mation density analysis of Purser and Huang (1993) to these data shows a maximum of roughly 0.5

km−1 in the middle troposphere with a rapid decrease above 12 km in altitude. Using this metric

as a guideline, the design points for the vertical profile are selected with the level spacing in the

troposphere at 0.5 km (implying a resolution of 2.0 km−1). Above 11 km, the spacing increases

smoothly, up to a maximum of 2.6 km at the last level, at an altitude of 31.9 km. In total, there are

40 levels from 0–31.9 km.

For cloudy profiles, additional parameters describing the layer cloud are added. The macro-

physical properties cloud height and visible optical depth are included in all cases. The microphys-

ical properties include parameters describing the particle size distribution. These will be covered

in more detail in Chapter 5.

3.3.2 Prior State and Covariance

For the atmospheric profiles, the prior states are defined in two ways: selecting a profile with

a synthetic covariance matrix, or selecting a profile with a covariance matrix derived from a ra-

diosonde climatology.

In the first method, the prior mean state is selected, typically from one of the standard atmo-

sphere profiles (Anderson et al., 1986). The inter-level correlation is then assumed to follow a

simple exponential decay as a function of level separation. In the most general sense, the a priori

covariance as a continuous function of z would be expressed as:

Sa(zi, zj) = σ(zi)σ(zj)e
−
∣

∣

∣

∣

zi − zj
L(i, j)

∣

∣

∣

∣

(3.18)

By discretizing the z coordinate, and assuming a fixed scale length L, the discrete covariance

matrix Sa;i,j is:

Sa;i,j = σiσje
−
∣

∣

∣

∣

zi − zj
L

∣

∣

∣

∣

(3.19)

For this simplified covariance matrix, no correlation is assumed between the different profile vari-

ables, meaning no correlation between temperature and water vapor (or any other constituent). An
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Figure 3.2 Synthetic prior covariance matrix (left) and correlation matrix (right) for temperature

(T) and water vapor (Q) using equation 3.19. Level numbering starts from the surface at level 0,

to the TOA at level 39.

example 40 level covariance matrix is shown in Figure 3.2. In this case, the temperature variance

is a linear ramp from 25 to 1 K2, and the water vapor variance is constant, equal to 1, for the loga-

rithm of the water vapor mass mixing ratio. The vertical scale length L is 6 km for temperature and

3 km for water vapor. The leveling starts at 0 at the surface, so the apparent sharpening at higher

level numbers is due to the more widely spaced levels at high altitudes.

In the second method, a radiosonde climatology is used to directly compute the covariance

from an ensemble of measurements. Data from the ARM Climate Research Facilities (ACRF)

is used for this purpose (Ackerman and Stokes, 2003). The ARCF sites feature twice daily ra-

diosonde launches. Three sites are selected to span a wide range in atmosphere conditions: North

Slope Alaska (NSA) at Barrow, Alaska; the Southern Great Plains (SGP) site at Lamont, Ok-

lahoma; and the Tropical West Pacific (TWP-C3) site at Darwin, Northern Territory, Australia.

Yearly and seasonal climatologies are constructed for each site; the seasonal climatologies include

all profiles within the typical 3 month seasons [December–February (DJF), March–May (MAM),

June–August (JJA), and September–November (SON)] plus 15 additional days before and after

the 3 month window. Initially, bad radiosonde profiles are removed from the dataset by various
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automatic checks: extremely high or low temperatures, large data gaps, or profile truncation below

the tropopause. In addition, some manual outlier removal was performed to remove bad humidity

profiles that showed unphysical variations. These data quality filters removed at most a few percent

of the radiosonde profiles. A humidity correction (Cady-Pereira et al., 2008) is then applied to the

each quality checked profile.

Standard atmosphere data is used for all other inputs required by the forward model that are not

measured by the radiosondes. These additional data are primarily concentrations of infrared active

trace gases (CH4, O3, N2O, CO). In addition, the stratospheric data from the radiosonde is dis-

carded. Altitudes above the tropopause are not consistently sampled since the maximum altitude

reached by the radiosonde balloon is often in the lower stratosphere. The humidity measurements

are not reliable in the very cold and dry stratosphere conditions. The stratosphere profile in the

prior is taken from the corresponding standard atmosphere profile. Each profile within a particular

composite uses the closest matching standard atmosphere. For example, all seasonal Darwin com-

posite profiles are combined with the standard tropical profile. The SGP winter (summer) profile

is combined with the standard midlatitude winter (summer) profile, and the spring and autumn

SGP profiles are combined with an average of the two standard midlatitude profiles. The NSA

seasonal profiles are combined with the standard subarctic profiles in an analogous manner. The

transition between troposphere radiosonde data and stratosphere standard atmosphere data occurs

at the tropopause, which occurs at level 19 in the subarctic winter profile (9 km altitude) and level

32 in the tropical profile (17 km altitude). The data on either side of the transition level is smoothed

to prevent sharp discontinuities in the profiles. A small amplitude random fluctuation (1 K RMS

for temperature, 30% RMS for log water vapor mixing ratio) is added to each stratospheric level,

before computing the covariance. The covariance within the stratosphere is therefore diagonal with

added sampling noise.

For clear sky priors, the profiles are also filtered to remove cloudy profiles. Cloudy profiles are

indicated by layers with saturated relative humidity levels in the high resolution (20 m) gridded

data before interpolation to the coarse level grid. Profiles with relative humidity over water or ice

(for T < −10◦ C) greater than 100% for two samples were classified as cloudy. Two samples
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Figure 3.3 Computed covariance (left) and correlation (right) matrices, for the prior covariance

computed at Darwin for DJF. Level numbering follows the convention in 3.2, so the upper left is

the surface temperature point, and the lower right is the TOA water vapor profile point. Figure

from Merrelli and Turner (2011).

implies a roughly 40 m layer for the high vertical resolution gridded data. For the Arctic data,

these thresholds caused a large number of profiles to be classified as cloudy. To get a statistically

significant sample for the seasonal composites, the count threshold was increased to five (from

two), and points in the lowest 200 m altitude were ignored. The physical justification for these ad

hoc threshold changes is that a relatively thicker saturated layer is needed to constitute a cloud layer

with enough optical thickness to affect the infrared emission in arctic conditions where the water

vapor content is much lower. The low altitude saturated points are likely occurring in blowing

snow or diamond dust conditions which would not be detected as a cloud layer.

Figure 3.3 shows the computed covariance and correlation matrices for the clear sky Darwin

DJF prior. The stratospheric levels stand out because the high altitude portion of the covariance

matrix becomes approximately diagonal.
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3.3.3 Forward Model and Jacobian

For Jacobian calculations, the LBLRTM computes analytic derivatives for surface temperature,

surface emissivity, temperature and molecular concentration profiles. Any clear sky calculation in

this work uses the LBLRTM analytic calculation. For LBLDIS, a simple first order finite difference

is used to compute the Jacobian. Specifically, for the ith state variable, the corresponding column

of K is computed as:

Ki(x) =
F (x+ δxiei)− F (x)

δxi
(3.20)

where ei is the unit vector for state variable i, meaning a value of 1 in the ith element and 0

otherwise. The size of the increment δxi is made as small as possible while still producing a

large enough change in the simulated radiance so that the difference is larger than any numerical

error in the calculation (e.g., floating point roundoff). For temperatures and cloud heights, the

increment is an additive 0.1 K and 20 m, respectively. For other variables, including water vapor,

cloud parameters (particle effective radius, optical depth, or particle PSD parameters), these are

multiplicative increments in the range of 1%–5%.

3.3.4 Sensor Description, Including Measurement Covariance

The simulated sensors in this study resemble the planned infrared component of the CLimate

Absolute Radiance and Refractivity Observatory (CLARREO). One of the primary objectives of

CLARREO is to measure the spectral radiance of Earth’s outgoing infrared emission with high

absolute measurement accuracy. The planned infrared instrument is a Fourier Transform Spec-

trometer (FTS) with 0.5 cm−1 spectral resolution. The spectral coverage from 200–2000 cm−1

would be covered by one FIR-optimized and one MIR-optimized detector. The essential specifi-

cations of the simulated sensors roughly match this design. The spectral Noise Equivalent Delta

Radiance (NEDR) follows from specifications of the potential pyroelectric FIR detector and photo-

electric MIR detector that would be used in the CLARREO instrument. (Mlynczak, 2010; Merrelli

and Turner, 2011). The two detector FTS design is also similar to the Atmospheric Emitted Ra-

diance Interferometer (AERI, Knuteson et al. (2004b)) with the shortwave detector in the AERI



40

Table 3.1 Key characteristics of the simulated instrument.

Sensor Number of wavenumber wavelength minimum NEDT

band channels range range at 250 K

[cm−1] [µm]

FIR 1006 200–685 50.0–14.6 0.18 K (at 600 cm−1)

MIR 2904 650–2050 15.4–4.88 0.17 K (at 760 cm−1)

replaced with an FIR detector. The MIR noise assumed in this study is similar to the longwave

AERI detector noise. The FIR noise level may be significantly larger than the MIR noise. In or-

der to compare the impact, a second noise curve will also be used in some calculations to see the

impact of noise on the information content metrics. The low and high noise levels are different

by a multiplicative factor of 3 in standard deviation (9 in variance). Figure 3.4 shows the assumed

sensor noise as NEDR curves. The curves marked as dashed lines are the “high noise” curves. For

the CLARREO instrument, the total NEDR curve will likely be the high noise curve for the FIR

and the low noise curve for the MIR. Later comparisons will be mainly be in this configuration,

but additional comparisons will be made between sensors at identical noise levels.

The wavenumber sampling and optical path difference is identical to the AERI (0.482 cm−1 and

OPD = 1.037 cm), although there are some additional complications to consider when comparing

the spectral radiance computed by the different forward models (see Sections 3.3.4.1 and 3.3.4.2).

These spectral characteristics are summarized in Table 3.1. Since no apodization is used, the

measurement noise covariance is assumed to be diagonal. This assumption is generally quite

reasonable for spectral measurements from an FTS (Antonelli et al., 2004; Turner and Löhnert,

2012).
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3.3.4.1 Spectral Sampling in LBLRTM

For all LBLRTM radiance simulations, the ILS shape is assumed to be the unapodized sinc

function for the idealized interferometer. The optical path and sampling is taken from the AERI,

specifically OPD = 1.037 cm, and sampling ∆ν = 0.48215 cm−1 (Knuteson et al., 2004b).

3.3.4.2 Spectral Sampling in LBLDIS

As described in 3.2.2, the LBLDIS averages quantities within the defined spectral increment

width, which results in a rectangular function ILS. For simplicity, the spectral grid is set to 0.5

cm−1, which is slightly coarser than the LBLRTM grid (0.48215 cm−1). Although changing the

spectral sampling in an interferometer should change the noise level, this is a very small discrep-

ancy (3%), so the same NEDR curve is applied for simulated measurements from either model.

In the overall framework, since the same forward model is generating synthetic measurements

as is used in the retrieval (a “perfect model” assumption), and the spectrometers are modeled as ide-

alized interferometers, the difference between the LBLDIS spectrum and the LBLRTM spectrum

should only be a difference in convolution kernel: rectangle function for LBLDIS, sinc function

for LBLRTM. Convolution is a linear operation, so it should not affect the information content cal-

culations within this framework. To verify this assumption, two extra calculations were run with

LBLDIS at a much higher spectral resolution (0.05 cm−1, a factor of 10 higher in resolution), with

a thin (τ = 0.2) and thick (τ = 10.0) cloud at z = 14 km in a standard tropical atmosphere profile.

The resulting radiances and radiance Jacobians are convolved with the same sinc function ILS as

LBLRTM, and these calculations are compared to the default LBLDIS configuration with 0.5 cm−1

rectangular function ILS. Each set of Jacobians is used to compute DFS, following the calculations

in equation 3.7. The final computed DFS for both simulated sensors (FIR-only, MIR-only, FIR +

MIR combined) are very close, with a maximum discrepancy between the different DFS metrics

of 1%.
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Chapter 4

Information Content in Clear Sky Profiles1

The clear sky vertical profile of temperature and water vapor is the primary retrieved geophys-

ical data from the hyperspectral infrared sounder. In this chapter, the information content, vertical

resolution, and robustness to simulated model error are studied for both FIR and MIR hyperspectral

observations. Since both spectra are simulated within the same framework, quantitative compar-

isons can be made between the various metrics. The results show where retrievals from FIR spectra

can complement or improve upon the same retrieval from MIR spectra.

4.1 Methods

4.1.1 Modeled Sensors

The FIR and MIR spectrometers are described in Chapter 3, and the key specifications are listed

in Table 3.1. The “base” instruments use the low noise (solid curve) NEDR curves shown in Figure

3.4. In addition to the base instruments, two additional instrument pairs are considered: high noise

and high spectral resolution. The high noise pair have the same characteristics except have NEDR

curves that are a factor of 3 higher (the dashed curves in Figure 3.4). The high spectral resolution

pair has the same characteristics but uses a factor of 4 higher OPD (4.148 cm) and a factor of 4

reduction in the spectral sample increment (0.12 cm−1). The same NEDR curve is used at this

higher spectral resolution. This does imply an observation requiring a factor of 4 longer in dwell

time, since the interferogram would need to be measured by the FTS detector over the longer OPD

1Portions of this chapter were published in Merrelli and Turner (2011) and are copyright of the American Meteo-

rological Society.
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with the same scan rate. These three sets of instruments will be labeled “base”, “NEDR ×3”, and

“∆ν/4” in later figures.

4.1.2 State Vector

Since the focus of this analysis is the thermodynamic profile, the assumed surface properties

are quite simple. The surface is assumed to be a greybody with constant spectral emissivity of ǫ

= 0.95. The surface temperature is assumed to be equal to the temperature of the level at z = 0.

The final state vector for the clear sky analysis consists of per-level profiles of temperature and the

logarithm of water vapor mass mixing ratio with the level grid as described in Section 3.3.1.

4.1.3 Clear Sky Priors

After constructing all the composite radiosonde prior covariances (section 3.3.2), a subset of

four was selected in order to simplify the analysis. The four composites, ordered by total water

vapor amount, are NSA DJF, SGP DJF, SGP JJA, and Darwin DJF. These priors roughly span the

same climatological range as the standard atmosphere profiles (subarctic, midlatitude, tropical),

but have the additional information about covariance among levels in the temperature and water

vapor profiles. Figure 4.1 shows the prior mean temperature and water vapor mass mixing ratio

profiles.

4.1.4 Ad Hoc Channel Selections

Due to the simplistic surface assumption (constant emissivity), the spectral information from

the surface is entirely redundant over all surface sensitive channels. In order to reduce the com-

putational complexity of the retrievals, most of the window region (770–1228 cm−1) is removed

from the MIR spectrum. The removal of the window region also removes the primary O3 absorp-

tion feature at 1040 cm−1. Since no detailed a priori data for O3 is used in this study, there is no

need to consider these channels.

One important consideration for thermodynamic profile retrieval is characterization of other

radiometric signatures in the radiance spectrum that can interfere with the signatures needed for
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profile retrieval. For the clear sky problem, the important signatures are trace gases, surface tem-

perature and surface emissivity. These signatures can easily introduce bias error in the thermody-

namic profile if not handled appropriately. One way to limit their impact is to simply censor them

from the spectrum used in the retrieval. For thermodynamic profiling, the temperature and water

vapor is spread over a large fraction of the IR spectrum and covers a large number of the available

channels. There is a large degree of redundant information in these channels, so discarding a small

fraction of the available channels should cause minimal degradation in the information content.

In order to remove the effect of trace gas interference, a simple ad hoc channel selection is

used. The three primary infrared active molecules after water vapor and CO2 are O3, CH4 and

N2O. For each of these molecules, the profile is scaled by 5% relative to the standard atmosphere

concentration, and the radiance is computed using LBLRTM in the standard configuration. Each

difference spectrum (5% perturbation versus unperturbed profile) is compared to the NEDR curve,

and any channel that shows a change that is larger than 0.5 times the NEDR at that channel is added

to the “ignore list”. This calculation is repeated for each ACRF climatology, and the total ignore

list consists of the union of all lists. The primary trace gas absorption features identified with these

calculations are N2O at 590 cm−1, O3 at 700 cm−1, and CH4 and N2O at 1300 cm−1. Figure 4.2

shows the identified channels overplotted on a brightness temperature spectrum computed from

the Darwin DJF mean profile. Note the large gap from 770–1228 cm−1 where the window and O3

sensitive channels are ignored.

4.2 Results

4.2.1 Simulated Forward Model Errors

Since the state vector only includes the temperature and water vapor profiles, the surface tem-

perature, surface emissivity and trace gas profiles are not retrieved. These variables are set to the

a priori values (bottom level temperature, ǫ = 0.95, and the standard atmosphere trace gas pro-

files). If the upwelling radiance measurement is simulated with a different surface property or

trace gas profile, while the forward model continues to use the a priori value, the difference es-

sentially creates a forward model error. Random differences were applied to several variables to
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circles. See text for description. Figure from Merrelli and Turner (2011).
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create such forward model errors. For the surface property, a perturbation to the temperature or

gray body emissivity would produce nearly the same effect on the simulated radiance, so only a

surface temperature perturbation is used. The temperature perturbation is an additive error drawn

from a Gaussian probability distribution with a standard deviation of 0.25 K. For trace gas profiles,

the total column is perturbed by a multiplicative factor, which is a drawn from a Gaussian with

a standard deviation of 2.5%. These perturbations are applied to the CH4 and N2O profiles, as

these showed the most impact on the final retrieval error. The 2.5% variations are roughly con-

sistent with observed seasonal variations in total column amounts observed with remote sensing

techniques based on differential solar absorption (Dils et al., 2006).

A number of retrieval experiments are run to compute sample estimates of the retrieval error.

Each experiment involves 30 retrievals over an ensemble of independent sensor noise realizations,

using the prior mean state and the measurement vector corresponding to the prior mean state.

The baseline experiment has no forward model perturbation, so the resulting retrieval error is

only caused by the random sensor noise. This represents an error “floor” for the retrieved state.

Three additional experiments are run, for each of three simulated forward model errors: surface

temperature, CH4 profile, and N2O profile perturbations. The retrieval error for each of these cases

will be increased by some amount dependent on the sensitivity of the retrieval to that forward

model error. The basic error statistic is the Root Mean Square (RMS) of the difference between the

mean retrieved profile and the truth (prior mean) profile. The mean retrieved profile is the average

over the 30 profiles with independent sensor noise realizations. Since the RMS is computed for

the mean retrieved profile, the uncorrelated random error due to sensor noise is reduced through

averaging by a factor of approximately
√
30. The error in the retrieved profile due to the forward

model error may be correlated, which would imply less reduction in the RMS through averaging.

Any retrieval that did not converge was discarded. This only occurred for surface temperature

perturbations to profiles with low water vapor amounts. Finally, each set of experiments was run

with the full channel set (all FIR channels, and MIR with the window channels removed, 770–1228

cm−1), and again with the ad hoc ignore list of channels sensitive to trace gas perturbations (section

4.1.4).
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The RMS error results are shown for all experiments in Figure 4.3. The baseline temperature

error is in the range 0.05–0.12 K for all cases, while the baseline water vapor error is in the range

0.05 g kg−1 for the tropical profile and 0.003 g kg−1 for the arctic profile. The baseline errors are

approximately equal when comparing the MIR and FIR retrievals.

The different sensitivities to the forward model errors qualitatively follow expectations, given

the location of the trace gas absorption bands and the highly variable total column water vapor in

the different mean profiles. First, focusing on the retrievals with full channels (the solid lines), the

surface temperature error is shown to increase sharply as the water vapor amount decreases. For the

FIR measurement in the tropical atmosphere, the transmission to the surface is zero everywhere,

so the retrieval is unaffected by the temperature error. A similar but not as direct pattern is seen

in the MIR results, since there is relatively more transmission to the surface in all climatologies.

The MIR results do show a drop in temperature error from the SGP JJA profile to SGP DJF, which

acts opposite to the change in water vapor amount between the two profiles. The reason for this

discrepancy is not clear, though it is likely related to the different covariance structures in the two

priors. The perturbation to the CH4 profile only affects the MIR, since the associated absorption

band is centered in the MIR at 1300 cm−1. The effect is weakest in the arctic mean profile, since

there is relatively less interference due to the low water vapor amounts and thus the overlapping

water vapor absorption lines are much weaker. The effect is strongest in the SGP DJF profile,

which may indicate that retrieval sensitivity to CH4 perturbations is maximum for particular water

vapor column amounts. Similar to the CH4 perturbation, the N2O perturbation shows the least

impact in the low water vapor arctic profile, and the maximum for the SGP DJF profile. It shows

essentially no impact on the water vapor error for the arctic profile. N2O has strong absorption

features in both the MIR and FIR, so the perturbation does cause errors in both bands, but the error

increase is much smaller in the FIR.

Applying the ad hoc channel selection to remove interfering trace gases shows significant im-

provement for the CH4 and N2O results, but no impact on the surface temperature, as expected. For

CH4, there is still residual temperature error in the SGP DJF profile, and residual water vapor error

in all but the arctic profile (which was not effected by CH4 at all). Even though CH4 absorption
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lines only exist in the water vapor absorption bands, they can introduce temperature error due to

the fact that the water vapor and temperature Jacobians tend to correlate these state variables. For

example, consider a real atmosphere profile that contains excess optical depth at wavenumbers in

the 1300–1400 cm−1 range due to increased CH4 concentration above the assumed prior value. If

the temperature decreases with height through the altitude spanned by the relevant weighting func-

tions, then at these wavenumbers the simulated spectrum would show a higher radiance than the

observed spectrum. The residual between the simulated and the measured radiance spectrum could

be compensated in the state estimate update by either an increase in water vapor concentration or a

decrease in temperature. The actual state estimate will quite likely contain a combination of both

compensating adjustments. It is very unlikely that the adjustment would only be made in the water

vapor profile, so the result is an incorrect adjustment to the temperature profile, and an increased

temperature error. The error that remains while using the ad hoc channel selection is likely caused

by residual weak CH4 lines that were not included in selection because the radiance change did

not pass the NEDR-based threshold. Similarly to CH4, applying the ad hoc selection improved the

error for the N2O as well, with some residual error left over in the MIR water vapor retrieval.

4.2.2 Applied OE Channel Selection

By using the ordered channel selection list from the OE selection algorithm, the DFS can be

plotted as a function of the number of selected channels. Dividing by the total DFS contained

within the entire channel set shows the fractional DFS and allows for easier comparison between

calculations that have different total DFS. Figure 4.4 shows this result for one composite prior and

all modeled sensors. Only one composite is plotted for clarity. Other composite priors produce

very similar curves. These fractional DFS curves have many common features. For the first s

channel selections, the channels are largely independent, so each new channel nearly 1 additional

DFS. This only continues for a few channels, roughly s < 8. As the number of channels increases,

the fractional DFS grows much slower as additional channels are correlated to channels that have

already been selected. The OE selection does concentrate information within these s channels, but

there is always some fraction in the remaining m − s channels. For example in Figure 4.4 the
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Figure 4.3 (left) RMS Error for temperature (right) and water vapor mass mixing ratio for various

simulated forward model errors. The results are shown for MIR (square markers, dark gray lines)

and FIR (X markers, light gray lines). Solid lines use maximum channels, and dashed lines ignore

channels with significant interference from trace gases (see text for description), Note the y-axis

is identical for all temperature plots except for the larger range for the surface temperature

perturbation. The y-axis display range for all water vapor errors is identical and logarithmic.

Figure from Merrelli and Turner (2011).
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selections are stopped at 250 channels for the base and NEDR ×3 spectrometers and 500 channels

for the ∆ν/4 spectrometers. These cutoffs were chosen so that> 80% of the total DFS are retained

in all selected subsets. From the logarithmic scaling in the plot, it is clear that reducing the DFS loss

from 20% to 10% would require a much larger number of retained channels (over 1000 for the MIR

∆ν/4 spectrometer). The subset of OE selected channels is overplotted on a simulated radiance

spectra in Figure 4.5. Note that the ad hoc channel selection described in Section 4.1.4 was applied

before the OE channel selection, which results in no selections of the weak water vapor lines in

the range 800–1200 cm−1. It is also important to note that the ad hoc selection did not remove

channels with wavenumbers higher than 1650 cm−1; channels at these higher wavenumbers are

ignored by the OE selection because of higher sensor noise for these channels.

4.2.3 Constrained OE Channel Selections

An additional variation of OE channel selection is used to investigate and visualize relative

information content of each spectral region. The channel selection is first run on one spectral

region using the standard approach described in Section 3.1.3 to select a subset of 250 channels.

The total set of channels is then merged into one combined set, and the selection continues, with

the constraint that the initial 250 are already allocated from the initial selection run with only those

channels from one spectral band. This process is similar to the sequential selection in Rabier et al.

(2002).

For example, consider an initial selection with 250 channels from the FIR spectrometer. The

channel list is now expanded to include the 2904 MIR channels as well as the (1006–250) uns-

elected FIR channels. The channel selection loop is now restarted using this merged set of un-

selected channels, with the posterior covariance including the initial selection of 250 FIR-only

channels. Channel selections 251 and beyond could be drawn from FIR or MIR channels, depend-

ing on their information content as computed by the OE algorithm.

The constrained selection is applied in two ways. First, 250 channels are selected from the FIR-

only channel list, followed by 250 channels from the merged (unselected FIR and MIR) channel

list. This yields a total of 500 selected channels. The second way applies the constraint in the



53

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Channels selected

F
ra

ct
io

n 
of

 to
ta

l D
F

S

Relative DFS for optimal channel selection

 

 

FIR base
FIR NEdR × 3
FIR ∆ν / 4
MIR base
MIR NEdR × 3
MIR ∆ν / 4

Figure 4.4 Cumulative DFS fraction as a function of number of channels selected by the OE

algorithm. The selections were stopped at a total of 250 channels for the baseline and high noise

sensor specifications, and 500 channels for the high spectral resolution specification. Figure from

Merrelli and Turner (2011).



54

800 1000 1200 1400 1600 1800 2000

Channel Selection in Darwin DJF composite

800 1000 1200 1400 1600 1800 2000

Wavenumber [cm−1]

Channel Selection in NSA DJF composite

200 400 600
200

220

240

260

280

300

B
rig

ht
ne

ss
 T

em
pe

ra
tu

re
 [K

]

200 400 600
200

220

240

260

280

300

B
rig

ht
ne

ss
 T

em
pe

ra
tu

re
 [K

]

Figure 4.5 Simulated radiance spectra for the Darwin DJF and NSA DJF prior profiles, with the

250 selected channels marked with circles. Figure from Merrelli and Turner (2011).
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reverse order. Specifically, the first 250 channels are selected from the MIR-only channel list,

and the next 250 are selected from the merged (unselected MIR and FIR) channel list. These two

constrained selections are both applied to two sensor configurations. The first uses the base FIR

and MIR sensors (both using the low noise NEDR curves), and the second uses the ×3 NEDR

(high noise) FIR combined with the base (low noise) MIR. Figures 4.6 and 4.7 show the results

of these constrained selections, presented as a scatter plot of selection rank versus wavenumber.

The selection rank as the y axis shows the order of channel selection. In each figure, the top plot

represents the first constrained selection (FIR-only for the first 250 channel selections), so all points

for ranks < 250 on the y-axis are drawn from the FIR wavenumbers. The reverse is seen in the

bottom plot, where all selections in the first 250 selections are drawn from the MIR wavenumbers.

Noting the wavenumbers of the selections for channels 251–500 reveals where the OE algorithm

finds independent information in the spectrum.

First, consider the constrained selection using the base MIR and FIR sensors (Figure 4.6). In

the top plot, where the FIR channels are selected first, all of the next 100 channels are selected from

the MIR. However, the MIR channels sensitive to water vapor (> 1200 cm−1) are almost entire

ignored in the final ∼100 selections, making up only 5 channel selections. The FIR water vapor

absorption band is well sampled in the last 100 selections. The MIR does show a large amount

of added information in temperature, from the high wavenumber side of the CO2 absorption band.

The FIR half of the CO2 band has interference from the water vapor absorption band, so it is likely

that adding MIR channels in this region improves the ability of the OE algorithm to separate water

vapor and temperature changes in the lower troposphere levels. The constrained selection in the

reverse order (MIR-only for the first 250 selections) is shown in the bottom plot, and reveals the

same principles. After the MIR-only selection, almost all the channel selections are drawn from

the FIR.

Repeating the experiment with the high noise FIR and low noise MIR sensors shows a similar

pattern, but with less emphasis on the FIR channels due to the higher noise (Figure 4.7). After

the MIR-only selection, the majority of selections in the merged channel list are taken from the

FIR water vapor absorption lines. Compared to the previous results with both low noise sensors,
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Figure 4.6 Constrained selection using the base (low noise) FIR and MIR sensors. 250 channels

selected from FIR only, followed by 250 channels selected from merged FIR and MIR channel

list (top); 250 channels from MIR only, followed by 250 channels selected from merged FIR and

MIR channel list (bottom). Figure from Merrelli and Turner (2011).
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relatively more MIR channels are selected. For example, 12 channels are selected from the MIR

water vapor absorption, up from 3 selected when both low noise sensors are used. Preferentially

less channels on the FIR side of the CO2 absorption band are selected, as the noise level is now

much higher for these channels compared to the MIR CO2 channels.

4.2.4 Information Content

Continuing with the same climatological priors, the DFS statistic is calculated at the prior

mean profile for all three sensor variants: baseline, high spectral resolution (∆ν / 4), and high

noise (×3 NEDR). The DFS is split into information in the temperature profile and information in

the water vapor profile by computing the trace along only the section of the A matrix that contains

the corresponding profile. Recalling from section 4.1.3 that the stratospheric levels in the prior are

synthetic, the DFS are computed only from the tropospheric levels. Figure 4.8 shows the results

for all conditions.

Comparing FIR and MIR temperature DFS results, the FIR shows a small information content

advantage (0.2–1 DFS increase) in nearly all situations. For the Darwin DJF prior, there is a slight

(0.2 DFS) advantage for the MIR. In this case the high water vapor column amount causes the

atmosphere to become fully opaque at the lowest levels in the FIR, which cases this slight drop

relative to the MIR DFS. The water vapor DFS is sharply higher in the FIR in the Darwin DJF

prior, in contrast to the temperature DFS.

Comparing the FIR and MIR for the water vapor DFS results, the FIR shows a slightly larger

advantage (0.5–2.0 DFS) in all situations. Interestingly, the DFS advantage for the FIR is highest

in the high water vapor profile, Darwin DJF. Although the high water vapor amount means the FIR

loses all sensitivity to the lowest levels which should cause a DFS drop, within the tropical prior

the lower troposphere levels are fairly constrained by the prior. Tropical atmospheres tend to be

nearly saturated at the lowest levels. Saturation implies a narrower range of water vapor mixing

ratio, and less potential for the measurement to help constrain the state estimate. Therefore, even

though the lowest level water vapor cannot be constrained by the FIR measurement, it is already

constrained by the prior so there is no significant DFS drop in this situation. In contrast, the upper
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Figure 4.7 Same as Figure 4.6, but using high noise FIR and low noise MIR spectrometers.

Figure from Merrelli and Turner (2011).
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troposphere levels in the tropical profile have the largest information content advantage for the FIR

due to the cold emission temperatures (section 2.3.2).

Profiles of the DFS per level are shown in Figure 4.9. These profiles display the DFS per km,

which is simply the DFS profile (the diagonal of the A matrix) divided by the layer thickness at that

altitude. The profiles at all four climatologies are shown, computed for the FIR-only, MIR-only,

and combined (FIR + MIR) spectral measurements. In the three cases shown in Figure 4.9 the DFS

profiles are computed with different a priori state covariance matrices to emphasize the affect of the

prior on the resulting DFS. The top image shows the results using the prior covariance computed

from the radiosonde climatology. The tropopause is easily visible as the altitude where the water

vapor DFS sharply drops, since there is little information where the water vapor concentration is

extremely small (roughly 16, 13, 11, 9 km, from left to right). There is a similar feature at these

altitudes in the temperature DFS, but this is related to a reduction in the prior variance above the

tropopause. The stratospheric data was simulated using 1 K RMS variation, which is significantly

smaller than the RMS temperature variation for all radiosonde climatologies except for the tropical

(Darwin) case. The tropical temperature RMS is very low (1–2 K at all levels). The DFS profiles

also show some small spatial scale fluctuation due to the propagation of sampling noise from the

covariance calculation. This prior includes any temperature–water vapor correlation found in the

radiosonde data as well. By computing a synthetic covariance using the exponentially decaying

correlation (equation 3.19), much of the sampling noise can be removed. This tuned synthetic a

priori covariance has the same variance (diagonal) as the computed covariance with the off diagonal

elements recomputed from the exponential equation. All cross-correlations between temperature

and water vapor are set to zero. The resulting DFS profiles are shown in the middle plot in Figure

4.9. The tropical temperature DFS stands out as being much lower than the other profiles. This is

due to the small RMS (1–2 K) mentioned earlier. Since the prior has such a small volume in state

space, there is not much added information for temperature. The water vapor profile, however,

has a high amount of information since there is a large amount of variance in the prior above

the boundary layer. Finally, to focus on the difference between the prior mean profiles, a single

synthetic covariance was applied to all profiles. The synthetic covariance matches Figure 3.2.
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Figure 4.8 DFS results for the temperature profile (left column) and water vapor profile (right

column). All three simulated spectrometer types are represented: baseline (top row), high spectral

resolution ∆ν/4 (middle row), and high noise (NEDR ×3) (bottom row). The plot markers match

those used earlier in Figure 4.3, namely: light gray and X for FIR results; dark gray and square

for MIR results. The solid line and dashed lines now represent different aspects. The solid line

represents results using the ad hoc channel selection (MIR window, and trace gas sensitive

channels are removed), and the dashed line represents the OE channel selection using 250

channels (500 channels for high spectral resolution). Figure from Merrelli and Turner (2011).
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The differences are now dependent only on the atmosphere profile, which affects the calculation

through the K matrix computed at the prior mean profile. The DFS profiles are shown in the

bottom part of Figure 4.9. Since there is no sampling noise, the profiles are much smoother. The

tropical temperature DFS profile no longer stands out since all profiles have the same total variance

in the prior.

A number of important qualitative features can be seen by comparing the results using different

spectra. The lack of sensitivity at the lowest levels in the FIR can be seen in the high water vapor

profiles (Darwin DJF and SGP JJA). However, there are enough microwindows between water

vapor absorption lines that even in the tropical profile there is information down to ≈ 2 km. The

FIR generally shows increased water vapor DFS at all altitudes. The temperature DFS is generally

equivalent between the FIR and MIR. The combined measurement shows the strengths of both FIR

and MIR spectra.

The effect of sensor noise and spectral resolution on the DFS profile can be examined by

plotting the difference between profiles using different instrument specifications. For these com-

parisons, the single synthetic covariance is used, in order to eliminate the sampling noise and focus

on the differences in the atmospheric profile rather than the shape of the prior covariance. Figures

4.10 and 4.11 show the difference between the baseline and high noise (NEDR ×3) and the high

spectral resolution (∆ν/4) and the baseline. Qualitatively, each plot shows similar overall fea-

tures. There is increased DFS primarily in the tropospheric levels with a small amount extending

into stratospheric levels. The sensor noise reduction (from high noise to low noise) appears to have

a smaller effect in the stratosphere water vapor DFS relative to the spectral resolution increase.

This difference is mainly due to the fact that DFS for stratospheric water vapor is close to zero for

the baseline and NEDR ×3 sensor specifications. The increased DFS for stratospheric water vapor

in the high spectral resolution case is an interesting result. The implication is that a stratospheric

water vapor profile may be retrievable with a spectral resolution increase to 0.125 cm−1.
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Figure 4.9 DFS profiles for temperature and water vapor, using a priori covariance computed

from radiosonde climatologies (top), a priori variance computed from radiosonde climatologies,

but with correlation set by equation 3.19 (middle), and a single synthetic covariance (Figure 3.2)

applied to all climatologies (bottom). Each plot shows results from FIR spectra (left), MIR

spectra (middle) and FIR + MIR spectra (right), with each image showing temperature DFS

profiles on the left, and water vapor profiles on the right.
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Figure 4.10 “∆ DFS” profiles: DFS profiles from the high noise (NEDR ×3) instrument

subtracted from the DFS profiles from the baseline instrument. Plot layout identical to Figure 4.9
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Figure 4.11 “∆ DFS” profiles from the baseline instrument subtracted from the DFS profiles

from the high spectral resolution (∆ν/4) instrument. Plot layout identical to Figure 4.9
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4.2.5 Vertical Resolution

The averaging kernel FWHM calculation presented earlier (Figure 3.1) can be used to compute

the vertical profile of the averaging kernel width, by computing the FWHM for each row in A.

Figure 4.12 shows these profiles for the baseline instrument, using the same set of a priori covari-

ances as used in Figure 4.9. Several patterns emerge, that are similar to patterns seen in the DFS

profiles. Regions of low DFS (stratospheric water vapor in particular) show very poor vertical res-

olution (off scale, meaning > 10 km), which reflects the fact that little can be added to the profile

beyond the a priori in this region. Removing the measured T–Q cross correlations and replacing

the T–T and Q–Q correlation with the exponential equation (middle plot) shows improved vertical

resolution for all but the tropical temperature profile. In general, removing the temperature–water

vapor correlations should increase resolution, since the retrieval can independently fit each profile.

For the tropical profile, it appears that the correlation between temperature and water vapor was

adding information and resolution to the temperature profile through the cross-correlation to water

vapor. The significant impact after removing this cross-correlation is due to the fact that the trop-

ical profile has a relatively small temperature and large water vapor variance. Applying the same

covariance to all four climatologies (bottom plot) improves the resolution in the tropical profile to

match the pattern suggested by the other three profiles.

In Figure 4.13, the summary resolution statistics are plotted in a layout that matches the DFS

summary shown in Figure 4.8. Each single point in this case is the average of the AK resolution

profile within the troposphere for that prior climatology and sensor specification. The measured a

priori covariances are used in these calculations. The relatively poor resolution for the Darwin tem-

perature is related to the previously discussed combination of low total variance and a high degree

of correlation between levels in the radiosonde climatology. The FIR shows a small advantage in

vertical resolution in all virtually all cases. The OE channel selection algorithm again shows good

performance, with only a very small (< 10%) degradation in vertical resolution in all cases.
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Figure 4.13 Summary of average troposphere vertical resolution. Label markers match those in

Figure 4.8. Figure from Merrelli and Turner (2011).
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4.3 Summary

A series of modeling and retrieval experiments enabled a detailed comparison of the informa-

tion content for clear sky thermodynamic profile retrievals. The comparison reveals that the FIR

offers some key advantages over the MIR for these retrievals. First, fewer trace gas absorption

lines in the FIR water vapor absorption band result in a retrieval that is more robust for model er-

rors in trace gas characteristics. For high water vapor absorption amounts, the atmosphere becomes

opaque near the surface, making the FIR profile retrieval immune to any surface mischaracteriza-

tion. While the opaque levels near the surface do imply a loss of information since these levels

will be undetectable, there are still microwindows with partial transmission down to about 2 km

in the highest water vapor atmosphere (Darwin). Even with an opaque total atmosphere column,

the partial transmission allows a thermodynamic profile to be retrieved from a large fraction of the

troposphere.

From an information content perspective, the FIR consistently shows an advantage in the water

vapor profile and an equivalent temperature profile in clear skies when compared to the MIR. For

high water vapor, the lowest levels would need to be retrieved by an MIR measurement. The

increased information using the higher spectral resolution measurement also suggests a potential

to retrieve water vapor in the stratosphere using the FIR, although this aspect should be further

investigated using more realistic measurements of the stratospheric water vapor profile mean and

variance (i.e., with more accurately defined a priori information). Using the averaging kernel

FWHM to estimate vertical resolution, the FIR shows a small but consistent resolution advantage.

It is important to note that the comparisons above used particular spectral shapes for the sen-

sor NEDR for each measurement (Figure 3.4), which have roughly equivalent minimum noise in

radiance units. The more realistic combination for the CLARREO instrument is thought to be

the higher noise FIR with the baseline (low noise) MIR (Merrelli and Turner, 2011). Repeating

a similar “∆ DFS” calculation as used above in Figure 4.10 shows the impact of this different

noise level. Starting on the left half of Figure 4.14, a comparison is shown between the DFS of an

FIR-only and combined FIR-MIR measurement versus an MIR-only measurement. The leftmost
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image, (a), shows the DFS of the FIR-only measurement minus the DFS of the MIR-only measure-

ment, so the change in DFS can be considered the difference in information between the FIR and

MIR measurements. The middle left image, (b), is now the DFS in the combined (FIR and MIR)

measurement, minus the MIR only measurement. This can be viewed as the added information

that would be obtained by extending an MIR spectrum into the FIR region. For these two images,

the baseline specification (low noise) is used for both the FIR and MIR. The middle right and far

right images, (c) and (d), show the same quantities, but now using the high noise FIR measure-

ment. Considering images (a) and (b), there is added information in water vapor throughout the

entire profile and within the troposphere for temperature. The combined measurement also shows

significant additional information in the boundary layer where the FIR is blind. This increase is

likely due to the improved characterization of levels just above the boundary layer, which can im-

prove the MIR result by allowing it to rely less on correlations to estimate the boundary layer state.

The result with the high noise FIR measurement shows that there is little advantage over the MIR;

the FIR-only measurement is slightly worse in all cases for the temperature profile, and worse for

the water vapor profile in the boundary layer. Above the boundary layer, the water vapor profile

is roughly equivalent. In the combined measurement, the added information is marginal. Thus,

answering the question of which spectral region produces the best sounding is difficult to answer

without detailed knowledge of the actual sensor noise performance.
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Figure 4.14 “∆ DFS” profiles, relating various DFS profiles back to the baseline MIR DFS

profiles; from left to right: (a) baseline FIR DFS profiles minus baseline MIR DFS profiles; (b)
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FIR DFS profiles minus baseline MIR DFS profiles; (d) baseline combined (FIR and MIR) DFS

profiles minus baseline MIR DFS profiles. Plot layout for individual images matches Figure 4.9
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Chapter 5

Information Content in Cloudy Sky Profiles

The framework discussed in the previous chapter is extended to include single layer ice clouds.

The spectral refractive index of ice and the scattering size parameter change significantly from the

MIR to FIR, resulting in key differences in the upwelling spectral radiance in cloudy atmospheres.

The previously discussed Optimal Estimation (OE) metrics are used throughout as the primary

method to quantify the changes in information content for thermodynamic profile and cloud prop-

erty retrieval.

5.1 Methods

5.1.1 Modeling Framework

The previously defined sensor specifications are used to define the spectral range, resolution,

and noise level. No comparison between the different specifications is made in this section, so

only the final configuration is used for these simulations. Specifically, the FIR sensor uses the

“high noise” NEDR and the MIR sensor uses the “low noise” baseline NEDR.

As discussed previously in Section 3.2.2, LBLDIS is used to simulate radiances in cloudy

conditions. Although LBLDIS can be used to approximate vertically inhomogeneous clouds, by

splitting a single cloud into layers with different particle distributions, this option is not used. All

simulated clouds in this study will be single homogeneous layers.

The LBLDIS input parameter file allows for a cloud layer to be defined with 3 key properties:

the particle effective radius, cloud optical depth, and a single altitude value to define the cloud
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height. The particle effective radius is used to compute the single scattering properties for the cloud

particles, by linearly interpolating between effective radius values in a pre-computed database.

The cloud particles are assumed to be evenly distributed throughout the layer containing the

input altitude value. The layers used by LBLDIS are those defined in the initial LBLRTM run that

computes the layer gaseous optical depths. To allow for precise control over the cloud altitude, the

cloud definition is extended to include an option of defining the cloud top and bottom. The level

grid is modified by inserting two levels equal to the desired cloud top and bottom, and then the

single-value LBLDIS cloud altitude will be equal to the mean of the cloud boundary altitudes. If

the cloud boundaries contain one or more levels in the pre-defined LBLRTM level grid, then the

optical depth is divided among the two or more layers that are now contained within the cloud.

The total cloud optical depth is linearly split among these layers according to the vertical altitude

fraction.

5.1.2 Single Scattering Optical Properties

The ice particle scattering property database of Yang et al. (2005) is used for all simulations.

This database contains the scattering phase function at 498 angles, the particle projected area,

total volume, single scatter albedo, asymmetry parameter, and extinction efficiency. The asymme-

try parameter is not directly used, since LBLDIS uses the computed phase function instead of a

Henyey-Greenstein function approximation. These databases exist for several different ice crystal

habits: solid column aggregates, bullet rosettes, hollow and solid single columns, plates, droxtals,

and spheroids. Figure 5.1 shows the volume of each particle habit as a function of particle di-

mension scaled by the volume of a sphere with equal diameter. Note that the volume of droxtals,

spheroids, and aggregates all follow a r3 scaling, with droxtals closest to the spherical volume.

The bullet rosettes and plates increase in volume slower than r3, and the columns initially scale as

r3 but start to change in aspect ratio for r > 100 µm so the volume grows slower than r3.

LBLDIS expects single scattering data for a bulk distribution of ice particles, meaning the

single-size data must be integrated over an assumed Particle Size Distribution (PSD). In all cases

the alternative gamma distribution form defined in Hansen and Travis (1974) is used as the particle
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Figure 5.1 Volume as a function of particle dimension for various habits in the Yang et al. (2005)

database, divided by the volume of a sphere with equal diameter.
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PSD:

N(r) = Cr

1− 3veff
veff e

− r

veffreff (5.1)

where reff and veff are the effective radius and effective variance parameters, and C is a constant

related to the total particle number density. The effective radius and variance are defined as:

reff =

∫ r2

r1

rπr2N(r) dr

∫ r2

r1

πr2N(r) dr

(5.2)

veff =

∫ r2

r1

(r − reff)
2r2N(r) dr

∫ r2

r1

r2effπr
2N(r) dr

(5.3)

For spherical particles, the effective radius parameter reff in this equation does match the definition

of effective radius commonly used for non-spherical particles (Baum et al., 2007), which is just

ratio of the PSD-weighted volume integral to the PSD-weighted area integral times 3/4:

re =
3

4

∫ r2

r1

V (r)N(r) dr

∫ r2

r1

A(r)N(r) dr

=
3

4

∫ r2

r1

4

3
πr3N(r) dr

∫ r2

r1

πr2N(r) dr

=

∫ r2

r1

r3N(r) dr

∫ r2

r1

r2N(r) dr

(5.4)

For non-spherical particles, the reff parameter in equation 5.5 will not be equal to the effective

radius re as defined in equation 5.4. Therefore, PSD equation will be rewritten for clarity by

renaming the reff parameter as the “PSD size parameter”, r0, and the width parameter will use the

symbol σ. In addition, the PSD can be expressed as a true PDF (meaning the integral over all r

is equal to unity) multiplied by a constant specifying the total number density (Petty and Huang,

2011):

N(r) = N0n(r) =
N0

(r0σ)
1−2σ

σ Γ
(

1−2σ
σ

)
r

1−3σ

σ e
−

r

σr0 (5.5)

This alternate form has the advantage of decoupling the two parameters r0 and σ such that changing

r0 “translates” the PSD and σ “stretches” the PSD. Figure 5.2 shows sample PSD curves for a

variety of coefficient values, plotted in both linear and logarithmic scales.
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Bulk single scattering properties are computed by the appropriately weighted integrals. The

key properties for LBLDIS are the extinction efficiency, single scatter albedo, and phase function.

The integrals can be expressed as follows, using the single size data computed for a single habit

(Baum et al., 2007):

Q̄ext(ν; r0, σ) =

∫ r2
r1
Qext(ν, r)A(r)N(r; r0, σ) dr
∫ r2
r1
A(r)N(r; r0, σ) dr

(5.6)

ω̄(ν; r0, σ) =

∫ r2
r1
ω(ν, r)Qext(ν, r)A(r)N(r; r0, σ) dr
∫ r2
r1
Qext(ν, r)A(r)N(r; r0, σ) dr

(5.7)

P̄ (θ, ν; r0, σ) =

∫ r2
r1
P (θ, ν, r)ω(ν, r)Qext(ν, r)A(r)N(r; r0, σ) dr
∫ r2
r1
ω(ν, r)Qext(ν, r)A(r)N(r; r0, σ) dr

(5.8)

Each single scattering property is a function of wavenumber (ν) and PSD parameters (r0 and

σ), and the phase function is additionally a function of the scattering angle θ. These values are

pre-computed and stored within databases for LBLDIS. The LBLDIS input parameter contains

wavenumber and effective radius, so a simple numerical inversion routine is used to compute the

required r0 parameter values for the desired grid values in re. The sigma parameter is not an input

parameter for LBLDIS so must be adjusted by recomputing the database at the desired σ value.

Example single scattering properties computed from the column aggregate data are shown in figure

5.3.

5.1.3 Surface Emissivity

The spectral variation of surface emissivity can interfere with cloud property retrievals. The

MIR window (roughly 750–1250 cm−1) contains the important spectral features related to the

refractive index of ice that allow cloud property retrieval. Particle effective radius can be estimated

from the slope of the spectrum through the IR window (Huang et al., 2004). Any slope due to

spectral changes in the surface emissivity can introduce bias errors in cloud property retrievals by

altering the spectral slope. For the clear sky simulations, this was not a serious concern, since

the impact on thermodynamic profile retrieval is not as important. In those simulations a constant

surface (graybody) emissivity is assumed. For these cloudy simulations, an approximate surface
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Figure 5.3 Bulk single scattering properties computed for solid column aggregates. Top three

plots show the primary scattering properties (Qext, ω0, and g) for three values of effective radius,

and σ = 0.1 for the PSD width parameter. The bottom three plots show the same scattering

properties for three values of the width parameter for re = 10 µm. The solid green lines are

identical for each pair of scattering property plots in the top and bottom plot groups.
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spectral emissivity shape is used that represents a linear mixture between soil-like and vegetation-

like surface spectral emissivity (?). The soil-like emissivity shows a strong feature at 1100–1200

cm−1 which is highly correlated to the spectral emissivity of quartz measured in the lab (figure

5.4). The soil-like spectral emissivity is extrapolated to the FIR by using a spectral fit of the

quartz emissivity spectrum. There are no spectral emissivity measurements of vegetated surfaces

in the FIR, so the vegetation-like emissivity spectrum is assumed to be flat with ǫ = 0.997. A

simple composite surface emissivity is used with the spectrum equal to the sum of the soil-like and

vegetation-like spectra with the constraint that the two coefficients must sum to unity:

ǫ(ν) = aǫsoil(ν) + (1− a)ǫveg(ν) (5.9)

Because of the constraint, the emissivity has only one coefficient to represent the relative weight

of the two spectra. The assumed prior mean state for the surface emissivity coefficient is 0.5 (equal

weighting). Figure 5.4 shows the equal weighted spectrum with the endmember spectra (a = 1 or

0, indicating 100% soil-like or vegetation-like spectra).

5.1.4 State Vector

As with the clear sky simulations, the state vector contains the profiles of atmospheric tem-

perature and logarithm of the water vapor mass mixing ratio. The mean profile is taken from the

standard atmosphere data (Anderson et al., 1986) rather than the computed priors from ACRF ra-

diosonde data. The following variables are added to the state vector to describe cloud and boundary

properties: cloud visible optical depth, PSD size parameter r0, PSD width parameter σ, cloud top

altitude, surface temperature, and surface emissivity coefficient. The entire state vector for the

cloudy sky simulation can be expressed as:

x = [τ, r0, σ, z, Ts, a, T (zk), ln(q(zk))]
T (5.10)

The assumed prior covariance for these additional components is assumed to be diagonal, while

the temperature and water vapor profiles have the synthetic correlation structure shown in figure

3.2. Table 5.1 shows the assumed prior variance for each variable. These are ad hoc selections but
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Table 5.1 Assumed prior variances for additional profiles in cloudy simulations

Variable Variance Units Note

optical depth (τ ) 25 N/A increased to τ 2 when τ > 5

PSD size parameter (r0) 2002 µm2

PSD width parameter (σ) 0.25 N/A

cloud height (z) 4 km2

surface temperature (Ts) 4 K2

emissivity coefficient (a) 502 Pct.

are intended to represent relatively good prior information on the cloud boundaries (cloud height

and surface temperature) but little prior information on cloud properties (cloud optical depth and

PSD parameters) and the surface emissivity coefficient.

5.1.5 Model Error

The layer cloud assumption is a significantly limiting approximation, since real clouds are

rarely homogeneous over a typical satellite sounder’s field of view (∼ 10 km). The forward model

error introduced by this assumption is difficult to estimate, but a simple approximation can be

made by using the independent pixel approximation and simulating the sensor field of view as

a collection of smaller subpixels. The independent pixel assumption is less limiting as long as

highly three dimensional cloud fields (e.g., fair weather cumulus) are avoided. The focus of this

research is high altitude ice clouds, such as cirrus and convective anvils, so the problematic three

dimensional cases are avoided.

The forward model error approximation is computed by computing a number of 4 sub-pixel

spectral radiances and averaging the results to get a single simulated radiance. Each of the 4 sub-

pixel clouds is assigned a random τ value, such that the mean of the 4 values is equal to some

selected fixed value and the variance is equal to 10% of the mean. For example a cloud with an

optical depth of 10 could have a sub-pixel realization with the four optical depth values 9.1, 10.2,
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11.3, and 9.4. The simulated radiance is then the mean of the radiance computed for the four in-

dividual τ values. Because the radiance has a nonlinear relationship to τ , this mean radiance will

not be equal to the radiance of a single simulation with τ = 10. Repeating this calculation for a

large number of realizations produces many spectral radiances all with the same average τ value

(10 in this case), from which a spectral covariance can be computed. For these experiments, the

random variation is a Gaussian random variable with mean 1 and standard deviation 0.1 that mul-

tiplies the optical depth value. The model error must be computed for each set of cloud properties.

The computed error depends strongly on cloud optical depth and cloud height with particle size

and habit causing smaller higher order affects. Thus, the model error is pre-computed for several

optical depth values for the tropical standard atmosphere for the column aggregate habit and an

effective particle radius of 5 µm. Figure 5.5 shows an example of the model error covariance for τ

= 1. This error covariance is then used in DFS and posterior error calculations by adding it to the

sensor noise error covariance (equation 3.4).

5.1.6 IWP and IWP Error Propagation

The total Ice Water Path (IWP) in the cloud layer is a key property connecting the cloud ra-

diative properties to the hydrological cycle in the atmosphere. Dynamic processes lift different

amounts of water vapor into the upper atmosphere where it condenses to form ice clouds. Al-

though the radiative forcing of these clouds on the Outgoing Longwave Radiation (OLR) is well

measured by satellites, the IWP has not as well known. GCMs also show a wide range in global

IWP distributions (John and Soden, 2006). Much of this variation can be accounted by differences

in ice particle PSD. Two PSDs with significant shape differences can lead to very different IWP

while simultaneously having similar optical depth. Part of the aim of the cloudy profile simulations

is to gain some insight about the extent to which hyperspectral measurements constrain the IWP,

and if extending the spectral measurement into the FIR will improve the IWP estimate.

The PSD and volume-dimensional relationships for the cloud particles are known in these

simulations. The IWP of the cloud layer (I) is a straightforward calculation integrating the volume

and PSD product to get the Ice Water Content (IWC) and then integrating IWC over the cloud
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thickness:

I =

∫ z2

z1

[

ρi

∫ r2

r1

N0V (r)N(r; r0, σ) dr

]

dz (5.11)

where ρi is the mass density of bulk ice, 0.917 g cm−3, and N0 is the as yet unspecified constant

proportional to the total particle number density (recall that the size distribution N(r) is a true

PDF, so it integrates to unity and has units of inverse length). The expression can be rearranged

in a more convenient form by first writing the visible optical depth (Qext = 2) as another double

integral of similar form to the IWP equation above:

τ =

∫ z2

z1

[

ρi

∫ r2

r1

N02A(r)N(r; r0, σ) dr

]

dz (5.12)

Rearranging the equation for I and then substituting τ gives the following equation for I in

terms of known quantities:

I =
1

2
ρiτ

∫ r2
r1
V (r)N(r; r0, σ) dr

∫ r2
r1
A(r)N(r; r0, σ) dr

(5.13)

Given a posterior covariance Ŝ, standard error linear propagation can be used to compute the

variance on the IWP:

σ2
IWP = KT

IWPŜKIWP (5.14)

The term KIWP is the Jacobian of equation 5.13 with respect to the state variables τ , r0 and

σ. KIWP is a three element column vector, since the other state variables (thermodynamic profile,

cloud height, surface properties) do not affect the IWP calculation. The components of KIWP are

presented in Appendix B.

5.2 Results

The main calculations for the cloudy profile investigation are the OE metrics at the prior mean

profiles. The metrics are computed in a grid spanning a section of state space across optical depth

and cloud particle size. An approximately logarithmic grid for cloud optical depth is used to span

the range 0.02–50 with 11 discrete values. For particle effective radius, five values from 5 µm to
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75 µm are selected. A single cloud is simulated at 14 km altitude for the tropical profile and 10 km

altitude for the subarctic profile. For the particle distribution, the width parameter σ is set to 0.1

and the solid column aggregate habit is used.

5.2.1 Thermodynamic Profile

∆DFS for the thermodynamic profiles showing the difference between combined measure-

ments and MIR-only measurements are shown in figure 5.6. With this sign convention, a positive

∆DFS implies the FIR adds new information to the MIR measurement. The temperature profile

shows significant through-cloud DFS increase for the smallest particle size and little increase for

the large particle size. At the small particle size, the increased DFS is shown for all but the τ = 50

profile, meaning radiance from below the cloud is transmitted even for the τ = 20 cloud. The

significant drop in Qext in the FIR for small particles implies a much lower optical depth. At 300

cm−1, Qext drops to about 20% of the visible optical depth, so the τ = 20 cloud has an optical

depth as low as 4 in the FIR (figure 5.3). At slightly higher wavenumbers (400 cm−1) the Qext

rises to about 50% of the visible optical depth at the same time the single scatter albedo rises to

0.85 which will also increase the cloud transmittance. For larger particle sizes, the Qext increases

and ω0 decreases, resulting in less transmittance through the cloud layer.

In addition to the increased information in the water vapor and temperature profiles below the

cloud, the water vapor profile shows increased information above the cloud. The increase above

the cloud is caused by the changed Jacobian profile shapes that result from the interaction between

water vapor and the cloud layer. In the clear sky case, there are many weighting functions cen-

tered on water vapor absorption lines that peak near or below the cloud altitude. A high optical

depth cloud has the effect of truncating the weighting function at the cloud altitude. The truncated

weighting function is much narrower since it only contains the high altitude tail of the clear sky

weighting function. In addition, the scattering of the cloud layer in the FIR creates cases where the

sign of the water vapor Jacobian changes sign near the cloud top. In clear sky cases, an increase

in water vapor will always lead to a decrease in radiance, due to the lapse rate in the troposphere.

Higher water vapor will block radiance from lower, warmer layers, and emit at colder emission
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temperatures. Higher water vapor inside a partially reflective cloud can have the opposite effect,

by essentially reducing the effective single scatter albedo of the ice particle and water vapor mix-

ture. In these cases an increase in water vapor can increase the radiance. Figure 5.7 shows several

example Jacobian profiles at FIR wavenumbers with different amounts of ice particle scattering.

Compared to the clear sky, the cloudy atmosphere does tend to produce sharper and more inde-

pendently shaped Jacobian profiles for upper troposphere water vapor in this case. Both of these

effects increase the DFS of the water vapor profile.

Finally, recalling the relative advantage of the FIR over the MIR for cold upper atmosphere

temperatures (discussed in section 2.3.2), the actual radiance signature associated with the water

vapor changes will be larger in the FIR. The MIR Jacobian profiles in figure 5.7 show much smaller

magnitudes and would be associated with a much smaller information content for the water vapor

profile. The result is the significant DFS increase above the cloud when combining the FIR spectra

with the MIR. The increase appears strongest for the higher cloud optical depth, as shown in figure

5.6.

The total profile DFS (sum of temperature and water vapor DFS profiles) can be summed

for the below cloud and above cloud layers to show the effect with respect to radius and cloud

optical depth more clearly (figure 5.8). The additional DFS added due to the cloud reflectance

or transmission can be estimated by subtracting the value for the lowest τ value. The additional

DFS above the cloud is fairly small, peaking at roughly 0.4 DFS. The below cloud shows a much

stronger effect, peaking at 3–4 additional DFS in the ideal conditions of large τ and small particle

size.

5.2.2 Cloud Microphysics

For each cloud property state variable, the DFS is plotted individually as a series of lines (one

per effective radius) as a function of cloud optical depth alongside the posterior error for the same

variable. Figures 5.9 and 5.10 show the results for the MIR-only measurements and the combined

measurements, respectively. A number of important qualitative features stand out in the MIR-only

measurements. First, for cloud optical depth, the DFS is nearly one at optical depths below 20 with
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Figure 5.6 ∆DFS profiles (combined minus MIR) for clouds with different particle effective

radii. The x axis in each image is an approximately logarithmic spacing in cloud visible optical

depth from 0.1 to 50. (Top) tropical atmosphere with cloud layer at 14 km and (bottom) subarctic

winter atmosphere with cloud layer at 10 km.



86

−0.2−0.1 0.0 0.1
12

13

14

15

16

17

18

19

20

21

A
lt

it
u
d
e
 [

km
]

315.00 cm−1

−0.2−0.1 0.0 0.1

[mW / (m2  sr cm−1 )] / ln(water vapor mass mixing ratio)

374.50 cm−1

−0.2−0.1 0.0 0.1

423.00 cm−1

−0.2−0.1 0.0 0.1

1457.00 cm−1

clear
Jacobian
profile

cloudy
Jacobian
profile

cloud
boundary
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show significant differences in the Jacobian profile. All MIR Jacobian profiles show a similar

shape to the single profile shown here.
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a steep drop for the highest values of optical depth. Since the prior variance for optical depth is

25, the DFS is large even for very thin clouds since the retrieval can strongly constrain the optical

depth to be near zero. The posterior error, expressed as a fractional error, does show that the error

increases for thin clouds as expected. The posterior error is similar for all particle sizes, with a

minimum error of a few percent in the region of highest sensitivity (1 < τ < 5). The error increases

to> 20% for the smallest τ and increases to the prior error for the large τ . Similar patterns are seen

in both particle PSD parameters (r0 and σ). The best sensitivity is for moderate range in optical

depth. The performance is poor at low τ (< 0.5) due to the smaller magnitude radiance signature.

At high τ (> 10) the performance is poor due to the cloud emissivity becoming near unity at all

MIR wavenumbers. The spectral signatures used to retrieve the microphysical properties saturate

and the sensitivity is lost. Large particle radii (>= 40 µm) also show lower sensitivity, since the

scattering properties tend to show less spectral variation as particle size increases.

The cloud height DFS and error shows rapid change as optical depth increases, converging to

a minimum error at approximately τ = 1. This behavior is expected since the cloud temperature,

and thus cloud height, is measured most accurately when the cloud is opaque. For the surface tem-

perature and emissivity, the DFS and error curve shapes can be entirely explained by the amount

of cloud transmittance. For large τ the transmittance drops to zero, in turn reducing the DFS to

zero and increasing the posterior error to the prior value. The smallest particle size shows slightly

increased DFS and reduced error. Recalling the larger single scatter albedo and smaller extinc-

tion efficiency of small particles (figure 5.3), the clouds with small particles should have larger

transmittance relative to clouds with larger particles.

Combining the FIR and MIR measurements significantly improves in the microphysical re-

trieval, but has little effect on the surface property and cloud height retrievals. Since the MIR

contains window channels, the radiance contrast between the warm surface and cold cloud tem-

perature allows for accurate τ and z retrievals. The cloud free emission in the FIR is largely

from water vapor that is almost always colder than the surface. The result is a much smaller ra-

diance contrast, so the FIR will not significantly improve τ and z retrievals. By adding the FIR

spectrum, the microphysical parameters show much improved posterior errors, particularly for the
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larger particle sizes and large τ . The MIR spectral signatures tend to saturate in those conditions,

as discussed above. The FIR scattering properties show elevated single scatter albedo for a wider

range of particle sizes than the MIR, and the lower asymmetry parameter leads to proportionally

more backscattering. The result is a partially reflective cloud even for τ > 20 with the spectral

shape of the reflective component dependent on the PSD parameters. The reflective signature adds

information for the PSD parameters up to the largest τ (50) in all cases but the largest particle size

(75 µm). Improvement is also seen in the τ retrieval itself for the large τ cases.

Focusing on the improvement of the FIR spectral measurement, figure 5.11 shows the ∆DFS

plots and error reductions computed as the difference between the FIR and combined results.

Specifically, the ∆DFS plots show the MIR-only DFS subtracted from the combined DFS, and

the error plots show the combined error subtracted from the MIR-only error. The sign choice im-

plies improvement is a positive number for all plots. These plots emphasize the ability of the FIR

to improve the retrievals for large τ and large re clouds. Little change is seen in clouds with small

re and moderate τ . In these cases, the sensitivity of the MIR is very large, because the spectral

shape of the cloud emissivity changes greatly through the MIR window region. Given our assumed

spectral sensor noise, the effective SNR of this signature is far larger in the MIR, so the FIR does

little to improve the retrieval of small particles.

5.2.3 IWP

Equation 5.14 is applied to the posterior error covariances from the MIR-only and combined

FIR + MIR measurements. IWP error expressed as a relative percentage of the total computed IWP

is presented in figure 5.12. The general form of the IWP error from the MIR-only measurement

matches expectations based on the shape of the DFS and posterior error plots shown in figure 5.9.

Specifically, increased error is seen for larger particle size, large optical depth, and small optical

depth, as discussed in the previous section. By adding the FIR measurement the IWP error is much

less dependent on particle size and the large particle IWP error is within a factor of 1–2 of the

small particle IWP error in the range of good sensitivity (0.1 < τ < 10). The error reduction for

small particles and large τ is quite dramatic with just over a 60% reduction.
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100

101

102

e
rr
o
r 
[r
e
l.
 %
]

0.0

0.2

0.4

0.6

0.8

1.0

r 0
 D
FS

100

101

102

e
rr
o
r 
[r
e
l.
 %
]

0.0

0.2

0.4

0.6

0.8

1.0

σ
 D
FS

0.0

0.1

0.2

0.3

0.4

0.5

e
rr
o
r 
[σ
]

0.0

0.2

0.4

0.6

0.8

1.0

z 
D
FS

0.0

0.5

1.0

1.5

2.0

e
rr
o
r 
[k
m
]

0.0

0.2

0.4

0.6

0.8

1.0

T
s
 D
FS

0.0

0.5

1.0

1.5

2.0

e
rr
o
r 
[K
]

10-1 100 101 102

Cloud τ

0.0

0.2

0.4

0.6

0.8

1.0

ǫ s
 D
FS

10-1 100 101 102
0

10

20

30

40

50

e
rr
o
r 
[%
]

MIR

Figure 5.9 Simulated cloud layer at 14 km in a tropical standard atmosphere. (Left) DFS and

(right) posterior error for cloud microphysical and boundary variables using the MIR-only

measurement. The dotted lines on the right side show the standard deviation in the prior, where

applicable.
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Figure 5.10 Same as figure 5.9, but using combined (FIR + MIR) measurements.
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Figure 5.11 For the three cloud microphysical properties, (Left) DFS increase by adding FIR to

MIR-only measurements (Right) Reduction in posterior error by adding FIR to MIR-only

measurements.
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5.3 Summary

Using simulations of cloudy sky profiles, extending the MIR spectral measurement into the FIR

improved retrievals of thermodynamic profiles and cloud microphysical properties. For through-

cloud profiling, the improvement is primarily for thick clouds with very small ice particle size

(re < 10 µm) which is not likely a common occurrence in the real atmosphere. Very small particles

can occur in orographically forced clouds (Kahn et al., 2003), but typical particle sizes in cirrus

clouds from global retrievals are generally in the range 10 < re < 50 µm (Radel et al., 2003). The

higher transmittance does imply a different vertical sensitivity to the cloud particle distribution.

Highly scattering FIR wavenumbers should have weighting functions that extend further into the

cloud compared to wavenumbers with lower scattering. Whether this could lead to retrievable

information on the vertical variation of particle size is a topic for future research.

The increase in above cloud information content in the thermodynamic profile is a more gen-

erally useful result. The increased DFS occurs in the upper troposphere and lower stratosphere,

where water vapor measurement is particularly important for climate studies due to its important

role in water vapor feedback, modulation of clear sky OLR, and clear sky cooling rates.

Combining FIR and MIR measurements also shows improved retrieval of IWP. The largest im-

provement is shown in high optical depth clouds. It should be noted that thick clouds are much

more likely to have vertically inhomogeneous particle distributions. In retrievals using observa-

tions of real clouds, the IWP for thick clouds would be poorly estimated for any FIR or MIR

measurement simply due to the fact that the lower levels of the cloud are obscured in the measure-

ment. Observations of much longer wavelengths such as microwave or submillimeter are required

in this case (Buehler et al., 2007). The improvement in IWP retrieval for moderate τ and large

particle size is of more practical use.
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Chapter 6

Discussion

6.1 Applications of FIR Radiative Transfer and Remote Sensing

6.1.1 FIR Small Particle Signatures in Anvil Clouds

In convective storms, strong updrafts can produce ice particles that are smaller than the ice

particles in the surrounding anvil cloud. This Small Particle Signature (SPS) can be detected as an

isolated area of smaller particle effective size embedded in the larger anvil cloud. The SPS are as-

sociated with reflectivity detections in ground based radar that indicate strong convective updrafts

(Hart, 2012). Figure 6.1 shows an example retrieval of ice particle effective size using the Daytime

Cloud Optical and Microphysical Properties (DCOMP) algorithm (Walther and Heidinger, 2012).

In this case DCOMP is applied to imager data collected from a geostationary weather satellite. The

algorithm uses shortwave channels (wavelength 0.6 µm and 3.9 µm) to retrieve particle effective

size. Since the FIR has information about particle size for optically thick clouds, FIR measure-

ments may be able to detect these SPS at night when the DCOMP algorithm is not applicable.

In figure 6.1, the two circles identify SPS within the observed anvil clouds. The SPS show

ice particle effective radii in the range 15–20 µm, while the surrounding anvil has an effective

radii of > 30 µm. Different types of anvil clouds described in Hart (2012) show a wider range

of particle effective radii, but the SPS typically shows retrieved radii of 10–15 µm smaller than

the surrounding anvil. For a simple sensitivity test, spectral radiances are simulated to show the

MIR and FIR brightness temperature contrast between the SPS and surrounding anvil cloud. Two

situations are simulated based on the typical effective radii ranges noted above. In each case, the

cloud layer is simulated with an optical depth of τ = 20. In the first case, the SPS and anvil
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Figure 6.1 DCOMP retrieved ice particle effective size in convective anvil clouds over south

central United States. These clouds were observed on May 22, 2008, in multispectral imagery

from a geostationary satellite. The orange circles mark Small Particle Signatures (re < 20 µm

surrounded by re > 30µm) that are associated with strong convective updrafts. Figure from Hart

(2012).
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Figure 6.2 Simulated brightness temperature difference across the MIR and FIR spectral ranges.

Two clouds are simulated, matching DCOMP retrievals of particle effective radius (see figure

6.1). The gray line is offset by +1 K to better show the differences in the two spectra.

have effective particle radii of 20 and 35 µm and in the second case the radii are 30 and 45 µm.

The standard midlatitude summer profile is used for the atmosphere. DCOMP uses the scattering

property database from Baum et al. (2007), which is based on the same single size scattering data

(Yang et al., 2005) used in these simulations. The particle habit used in these simulations is the

column aggregate, which does not match the Baum et al. (2007) habit distribution. However,

the resulting difference in sensitivity to effective particle radius should be small. For each of

the two pairs of effective radii, the two spectral radiances are computed and subtracted to get

a brightness temperature difference spectrum. The difference spectra show which wavenumbers

would be sensitive to the difference in particle size between the SPS and anvil. These spectra are

shown in figure 6.2. The MIR wavenumber range shows maximum differences of about 0.1 K,

while the peak scattering wavenumbers in the FIR (400 cm−1) show 1.5–2.5 K difference. These

spectral differences suggest that a FIR imager channel with a noise level below 1 K in brightness

temperature could detect the SPS.
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6.1.2 FIR Radiative Transfer in GCMs

In large domain atmosphere models such as General Circulation Models (GCMs), the primary

radiative quantity is the vertical profile of the spectrally integrated flux. The flux profile is directly

related to the heating rate, which in turn couples the radiation field to dynamical processes in the

atmosphere. The spectrally resolved flux or radiance is not directly important, since the spectrally

integrated quantity is what controls the heating rate profile. Typically the radiative transfer im-

plemented within these models uses optimized parameterizations over a relatively small number

of wide spectral bands covering the entire spectrum (longwave and shortwave). These optimized

methods are tuned to reproduce the heating rate profiles computed with more accurate but com-

putationally expensive reference codes. The FIR is particularly important since a large fraction of

the clear sky longwave heating occurs in this spectral range (Clough et al., 1992). Any updated

knowledge of FIR radiative transfer should lead to updated parameterized codes used in GCMs or

other forecast models.

One such parameterized model, the Rapid Radiative Transfer Model developed at AER (RRTM,

Mlawer et al. (1997)) is based on the same MT CKD water vapor continuum as used in the

LBLRTM. Recent field campaign data has led to updates in the MT CKD continuum parameters

in the FIR (Turner and Mlawer, 2010). Since the RRTM is used within the Community Earth Sys-

tem Model (CESM), a coupled GCM developed at the National Center for Atmospheric Research

(NCAR), the changes to the FIR water vapor continuum can be quickly adapted to the model. The

change to the water vapor continuum absorption introduces an altered profile in the clear sky heat-

ing rate. The zonal average clear sky heating rate change is shown in Figure 6.3. The model quickly

adjusts to this energy imbalance by adjusting the temperature, cloud and water vapor fields. The

higher altitude layer that is heated by the changed water vapor absorption warms and the relative

humidity drops. Lower humidity causes a slight drop (0.5%) in global cloud cover. The pattern

of zonal heating changes due to the cloud and humidity adjustment in a way that tends to cancel

the heating change introduced by the water vapor continuum model update. This set of GCM runs

shows a direct connection between the clear sky radiative transfer parameterizations and the model

thermodynamic fields. No significant changes were noted in the model’s dynamical fields, as the
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thermodynamic and cloud adjustment appeared to balance. The gradual improvement of radiative

transfer parameterizations can be noted by comparing the impact of this recent MT CKD update to

those in the previous generation of radiation parameterizations (Collins et al., 2002). In this earlier

study, the pattern of zonal heating change from the longwave radiative transfer update shows a

qualitatively similar pattern in the upper troposphere (P < 500 hPa), but shows a larger magnitude

by roughly a factor of 5.

6.2 Future Research

The results presented in this study show a number of potential advantages in extending hy-

perspectral measurements into the FIR spectral region. The calculations are dependent on high

accuracy prior knowledge about the gas absorption spectral properties and the single scattering

properties of ice particles. For the clear sky problem, the calculations rest on the AER line database

and the MT CKD water vapor continuum absorption model. These datasets are well validated with

a number of ground observations (Turner and Mlawer, 2010). The simulation of upwelling radi-

ance spectra should also be quite accurate, although validation data in the FIR is still quite limited.

The FIR spectroscopic database has not been validated to the level of the MIR. In the cloudy sky

profile, the scattering properties are less well validated. Measurements of the upwelling spectrum

are even more important to validate cloud properties, since very little of the cloud radiance would

be observable from the ground. Much of the potential added utility of FIR observations is re-

lated to measuring thick clouds, which are not present in dry and high altitude conditions ideal for

ground based FIR measurements. This research does highlight the need for further targeted field

campaigns to address these issues. Possible research programs include:

• Further observations of the clear sky FIR spectrum from high altitude aircraft platforms.

The TAFTS instrument collected such data in the EQUATE field campaign (Cox et al., 2007).

This existing dataset is limited and not able to validate the FIR radiative transfer to the extent

that is needed. More low noise, high spectral resolution measurements are still needed to

address the clear sky radiative transfer.
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Figure 6.3 (Left) the zonally-averaged clear sky longwave heating rate change between a control

CESM run (using the default RRTM and MT CKD water vapor continuum model) and an

experimental CESM (using RRTM modified to include a updates to the MT CKD water vapor

continuum based on FIR measurements). (Right) zonally-averaged total heating rate change. The

total heating rate includes including clear sky longwave and shortwave heating rates, cloud

forcing, latent heating, and heating from subgrid turbulent diffusion parameterizations. The total

heating rate change shows that the adjustment to the various model fields (clouds, temperature,

and humidity) tend to reduce the heating rate change introduced by the MT CKD update. Figure

from Turner et al. (2012).
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• Observations of the upwelling FIR spectrum in the presence of clouds are needed. Some

limited data does exist for cirrus clouds (Cox et al., 2010), but a larger dataset is needed, for

a wider range of cloud conditions. The results of this dissertation suggest potential benefits

for FIR observations of anvil clouds, which would require newly designed field campaigns

targeting these cloud types.

• Of particular importance is better validation of the different ice crystal habits within the

single scattering property databases. Observations combining near IR (reflected solar radia-

tion) and MIR are particularly useful to help constrain habit (Baran and Francis, 2004), and

it would be very informative to repeat similar measurements but combine FIR, MIR, and re-

flected solar radiation in the near IR or visible wavelengths. Radiative closure over the entire

thermal and reflected solar wavelength range is needed to produce self consistent scattering

models.

• Measurements of FIR surface emissivity are also needed where the microwindows are lo-

cated. Even for moderately dry midlatitude atmosphere profiles, there will be some emis-

sion from the surface. There are no documented observations of FIR emissivity other than

the mineral data referenced in this study (Christensen et al., 2000), so it is not known if there

are features due to other natural surfaces (vegetation in particular) that may complicate FIR

retrievals.

Integration within GCMs is extremely important for any updates to FIR radiative transfer. This

is especially important for ice scattering in the FIR, since it is likely to show the largest changes as

our understanding improves.
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Appendix A: List of Satellite Instruments

The following tables contain a brief summary of all satellite instruments mentioned in Chapter

2. References, key specifications (wavenumber coverage, approximate spectral resolution, and

spatial resolution), platforms, and operational dates are listed. The comment column lists and

extra information, such as those instruments that are limb sounders, and those that are Fourier

Transform Spectrometers (FTS). For limb sounders, the listed spatial resolution is the width of the

beam at the tangent point. The number of channels listed for an FTS is flexible, since it can change

depending on the processing applied to the raw interferogram. The number listed is either the

number used in standard L1 processing, or for the older instruments (e.g., IRIS), just the spectral

coverage divided by the resolution.
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Table A.1 Satellite instrument acronym list

Acronym Expansion Table

AERI-ER
Atmospheric Emitted Radiance Interferometer -

A.4
Extended Range

AIRS Atmospheric InfraRed Sounder A.2

AVHRR Advanced Very High Resolution Radiometer A.2

CLARREO CLimate Absolute Radiance and Refractivity Observatory A.4

CrIS Cross-track Infrared Sounder A.2

FIRST Far-InfraRed Spectroscopy of the Troposphere A.4

HIRS High resolution Infrared Radiation Sounder (TOVS subsystem) A.2

IASI Infrared Atmospheric Sounding Interferometer A.2

IASI-NG IASI - New Generation A.2

IRIS InfraRed Interferometer Spectrometer A.2

ITPR Infrared Temperature Profiling Radiometer A.2

MIPAS Michelson Interferometer for Passive Atmospheric Sounding A.2

MLS Microwave Limb Sounder A.3

MODIS MODerate resolution Imaging Spectrometer A.2

REFIR Radiation Explorer in the Far-InfraRed A.4

SIRS Satellite InfraRed Spectrometer A.2

SMILES Superconducting subMIllimeter-wave Limb Emission Sounder A.3

SMR SubMillimeter Radiometer A.3

TAFTS Tropospheric Airborne Fourier Transform Spectrometer A.4

TOVS TIROS-N Operational Vertical Sounding system A.2



1
1

6

Table A.2 Infrared Satellite Instrument list

Instrument Satellite Launch Wavenumber Approx. spec. Num of Spatial Comments Ref.

Year coverage [cm−1] res. [cm−1] spec. chan. res. [km]

SIRS Nimbus 3 1969 670–900 5 7 225 Wark and Hilleary (1969)

IRIS-B Nimbus 3 1969 400–2000 5 320 150 FTS Conrath et al. (1970)

IRIS-D Nimbus 4 1970 400–1600 2.8 420 95 FTS Hanel et al. (1971)

ITPR Nimbus 5 1972 540–2900 5–400 5 20 Smith et al. (1974)

HIRS
Nimbus 6,

1975 685–2700 3–100 19 17 Schwalb (1978)
TIROS-N

AVHRR TIROS-N 1978 800, 900, 2650 75, 300 3 1 Schwalb (1978)

MODIS Aqua, Terra 1999 700–2700 15–150 16 1 Barnes et al. (1998)

MIPAS EnviSat 2002 685–2410 0.025 50,000 30 FTS, Limb Fischer et al. (2008)

AIRS Aqua 2002 650–2665 0.4–2.1 2378 13.5 Chahine et al. (2006)

IASI MetOp-A 2006 645–2760 0.5 8461 12 FTS Hilton et al. (2011)

CrIS Suomi-NPP 2011 650–2550 0.625 1305 14 FTS Bingham et al. (2010)

IASI-NG EPS-SG 2020 645–2760 0.25 16921 12 FTS Crevoisier (2012)
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Table A.3 Submillimeter Satellite Instrument list

Instrument Satellite Launch Frequency Approx. spec. Num of Spatial Comments Ref.

Year coverage [GHz] res. [MHz] spec. chan. res. [km]

SMR Odin 2001 486–581 0.1–1 ∼1000 ? Limb scanner Nordh et al. (2003)

MLS Aura 2004 118–2250 0.2–500 728 2−12 Limb scanner Waters et al. (2006)

SMILES ISS 2009 624–650 1.8 3456 ? Limb scanner Takahashi et al. (2010)



1
1

8

Table A.4 Far Infrared instrument list

Instrument Frequency Approx. spec. Num of Comments Ref.

coverage [cm−1] res. [cm−1] spec. chan.

AERI-ER 400–2400 0.5 2000 FTS, cooled photoelectric detector Knuteson et al. (2004b)

CLARREO 200–2000 0.5 3600 FTS Sandford et al. (2010)

FIRST 50–2000 0.625 FTS, cooled bolometer detector Mlynczak et al. (2006)

REFIR 100–1400 0.5 2600 FTS, room temperature pyroelectric detector Bianchini et al. (2006)

TAFTS 100–600 0.12 FTS, cryogenic photoelectric detectors Canas et al. (1997)
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Appendix B: IWP derivatives

The equation relating the IWP error to the posterior error covariance 5.14 requires the deriva-

tives of the IWP with respect to the retrieved state variables. The alternative form of the gamma

PSD 5.5 and the IWP equation 5.13 are reproduced here for clarity:

N(r) =
N0

(r0σ)
1−2σ

σ Γ
(

1−2σ
σ

)
r

1− 3σ

σ e
− r

σr0 (B.1)

I =
1

2
ρiτ

∫ r2
r1
V (r)N(r; r0, σ) dr

∫ r2
r1
A(r)N(r; r0, σ) dr

(B.2)

The required derivative is:

KI =

[

∂ IWP

∂τ
,
∂ IWP

∂σ
,
∂ IWP

∂r0

]

(B.3)

It is convenient to express this derivative by first calculating the derivatives of the PDF function

n(r; r0, σ) with respect to the two PDF parameters, r0 and σ:

∂n(r; σ, r0)

∂r0
= n(r; σ, r0)

[

r

r0
+ 2σ − 1

]

1

σr0
(B.4)

∂n(r; σ, r0)

∂σ
= n(r; σ, r0)

1

σ2

[

1

r0

(

r − r0 ln

(

r

σr0

))

+ ψ0

(

1− 2σ

σ

)

+ 2σ − 1

]

(B.5)

The function ψ0(x) is the 0-order polygamma function, also known as the digamma function.

It is equal to the first derivative of the logarithm of the gamma function.

The IWP derivatives can then be written in terms of the two n derivatives. In these expressions,

the arguments of n are omitted for brevity, meaning n in these equations represents n(r; r0, σ):
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∂IWP

∂τ
=

IWP

τ
(B.6)

∂IWP

∂σ
=

ρiτ

2

∫

∂n

∂σ
V (r) dr

∫

nA(r) dr −
∫

∂n

∂σ
A(r) dr

∫

nV (r) dr

(∫

nA(r) dr

)2
(B.7)

∂IWP

∂r0
=

ρiτ

2

∫

∂n

∂r0
V (r) dr

∫

nA(r) dr −
∫

∂n

∂r0
A(r) dr

∫

nV (r) dr

(∫

nA(r) dr

)2
(B.8)

The description of V (r) and A(r) in the Yang et al. (2005) database are vectors of values

computed at the particle size grid values. Since not all particle descriptions have fixed power law

relationships for the volume-size relationship (see figure 5.1), the array of pre-computed values

must be used. The IWP derivatives must be computed numerically for this reason.


