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Abstract	

The	Impacts	of	Climate	Change	on	Building	Design	Conditions	

by	Gesangyangji	

	

Buildings	are	designed	to	 function	within	 local	climate	conditions.	As	such,	building	

designers	rely	on	climate	metrics	that	are	not	always	common	in	meteorology,	such	as	upper	

and	lower	1%	dew	point	temperature,	and	heating/cooling	degree	days	and	hours.	Currently,	

these	 standards	 are	 calculated	 from	 historical	 climate	 conditions,	 but	 for	 new	 buildings	

under	design,	it	is	important	to	include	impacts	of	climate	change	to	adapt	the	design	and	

performance	of	buildings	for	future	climate	conditions.	

This	 study	uses	 the	 climate	 design	 chart	 (2013	 edition)	 produced	by	 the	American	

Society	of	Heating,	Refrigerating	and	Air-Conditioning	Engineers	(ASHRAE)	as	starting	point	

for	 future	 climate	 analysis,	 and	 has	 successfully	 reproduced	 AHSRAE’s	 temperature	 and	

precipitation	 metrics	 for	 Madison,	 WI.	 In	 both	 temperature	 and	 precipitation	 metrics,	

several	discrepancies	appeared	between	our	and	ASHRAE’s	results,	which	are	more	likely	to	

be	 caused	 due	 to	 the	 way	 to	 deal	 with	 missing	 values	 instead	 of	 calculation	 methods.	

ASHRAE’s	precipitation	show	strange	drops	in	May	and	June,	which	are	the	main	differences.	

We	also	produced	four	ASHRAE-equivalent	future	design	charts	under	RCP	4.5	and	RCP	

8.5	for	mid-	and	late-	century.	The	ASHRAE	metrics	related	to	extreme	events,	which	can	be	

a	challenging	to	capture	in	archived	climate	data	due	to	requirements	of	realistic	variance.	

This	 issue	 is	 addressed	 by	 our	 new	 downscaled	 dataset,	 the	 University	 of	 Wisconsin	
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Probabilistic	Downscaled	(UWPD)	data.	UWPD	data	is	a	probabilistic	statistical	downscaled	

data	assuming	large-scale	climate	can	only	determine	the	 likelihood	of	 local-scale	climate	

instead	 of	 a	 specific	 value	 of	 local-scale	 climate.	 This	 dataset	 gives	 probabilistic	 density	

functions	 of	 variables,	 which	 captures	 realistic	 variances	 at	 the	 local	 scale.	 ASHRAE’s	

calculations	are	based	on	hourly	basis,	to	be	consistent	to	ASHRAE’s	methods,	we	rescaled	

historical	hourly	observations	to	future	hourly	data	by	using	UWPD	projection.	

By	analyzing	absolute	and	percentage	difference,	we	found	the	metric	for	degree	days	

and	hours	is	more	sensitive	to	global	warming	than	other	metrics.	The	sensitivity	is	higher	

in	 the	 spring	 and	 fall,	 and	 when	 the	 threshold	 temperature	 is	 higher.	 Furthermore,	 we	

examined	 the	 trend	 of	 cooling	 degree	 hours	 (CDHs)	 with	 base	 temperature	 23.3°C	

throughout	the	21st	century	under	RCP	4.5	and	RCP	8.5,	and	we	found	CDHs	are	expected	to	

increase	under	both	scenarios.	In	Madison,	CDHs	will	double	by	2050	and	fivefold	by	2090	

under	RCP	8.5.	The	 increase	 is	significantly	greater	 than	the	 increase	under	RCP	4.5.	Our	

results	show	that	under	moderate	emissions	scenario	(RCP	4.5)	Madison	will	be	similar	to	

St.	 Louis,	 Missouri	 by	 2090;	 and	 under	 high	 emissions	 scenario	 (RCP	 8.5),	Madison	will	

resemble	Birmingham,	Alabama	by	2070.	
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Chapter	1	

Introduction	

Buildings	must	be	designed	for	local	weather	and	climate.	Meteorological	parameters	

including	 temperature,	 humidity,	 wind,	 precipitation,	 and	 solar	 irradiance	 are	 not	 only	

critical	factors	for	selecting	building	materials	(roofing,	window,	etc.)	and	design	tools,	but	

also	the	basis	for	building	energy	use	through	indoor	heating,	ventilating,	air	conditioning	

and	refrigerating	(HVAC&R)	systems.	This	study	calculates	building	design	metrics	based	on	

future	 climate	 model	 projections,	 in	 a	 manner	 consistent	 with	 The	 American	 Society	 of	

Heating,	Refrigerating	and	Air-Conditioning	Engineers	(ASHRAE).	

1.1	Building	Design	Conditions	

To	 provide	 recognizable	 weather	 information	 for	 building	 design	 teams,	 climatic	

design	conditions	are	developed	from	meteorological	elements.	ASHRAE	is	an	association	

that	has	been	working	on	converting	meteorological	elements	to	building	design	information.	

ASHRAE	 has	 published	 Climatic	 Design	 Conditions	 in	 Chapter	 14	 of	 the	 2013	 ASHRAE	

Handbook	-	Fundamentals	(HOF)	(ASHRAE,	2013a).		

Climatic	design	elements	in	ASHRAE’s	table	can	be	broadly	defined	as	1)	annual	heating	

and	 humidification	 design	 conditions,	 2)	 annual	 cooling	 and	 dehumidification	 design	

conditions,	3)	extreme	annual	design	conditions,	and	4)	monthly	climate	design	conditions,	

which	 cover	 temperature,	 degree-days	 and	hours,	 dry-bulb	 and	wet-bulb	 temperature	 at	



 2 

various	 frequency	 of	 occurrence,	 mean	 daily	 temperature	 range,	 and	 clear	 sky	 solar	

irradiance	 (ASHRAE,	 2013b).	 The	 2013	 edition	 of	 ASHRAE	 climate	 design	 standard	 is	

calculated	for	6443	locations	around	the	world,	and	it	uses	a	period	of	record	from	1986	to	

2010.	The	2013	ASHRAE	Climatic	Design	Conditions	for	Madison	is	provided	in	the	Appendix	

Section.	A.1	and	a	simple	description	for	all	variables	is	provided	in	Appendix	A.2.		

The	 design	 variables	 in	 the	 ASHRAE	 tables	 are	 calculated	 from	 typical	 weather	

variables	but	are	not	common	for	traditional	meteorological	analysis.	Cooling	and	heating	

degree	days	are	calculated	from	hourly	temperature	and	are	related	to	the	amount	of	energy	

used	to	operate	heating	or	cooling	systems.	Degree-day	measurement	 is	 the	difference	 in	

temperature	between	 the	mean	outdoor	 temperature	over	 a	24-hour	period	 and	 a	 given	

threshold	temperature	for	a	building	space,	typically	65	°F	in	the	U.S.	(Baechler	et	al.,	2015).	

Monthly	cooling	degree	days	(CDDs)	are	defined	as	the	sum	of	the	differences	between	daily	

temperature	 and	 the	 threshold	 temperature	when	 the	differences	 are	positive	 in	 a	 given	

month.	While	daily	temperature	exceeds	the	threshold	temperature,	air	conditioning	often	

needs	to	be	used	to	cool	the	buildings,	so	CDDs	often	reflect	the	amount	of	energy	that	is	used	

for	operating	the	cooling	system.	

Building	designers	rely	on	such	metrics	to	adapt	the	design	of	buildings	and	energy	

systems.	Figure	1.1	shows	ASHRAE’s	climate	zone	map	(ASHRAE,	2017).	These	climate	zones	

are	defined	based	on	average	temperature,	heating	and/or	cooling	degree	days,	and	annual	

precipitation	 amount	 (ASHRAE,	 2017),	 which	 are	 covered	 in	 the	 ASHRAE	 table.	 Pérez-

Lombard	et	al.,	2011	shows	that	HVAC	systems	serving	multiple	zones	may	waste	a	great	

amount	of	energy	in	conditioning	all	zones	when	only	a	few	are	occupied	(Pérez-Lombard	et	
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al.,	2011).	With	correct	information	of	average	temperature,	heating	and/or	cooling	degree	

days,	and	annual	precipitation	amount,	designers	can	find	the	right	climate	zone	and	adjust	

their	 building	 design	 to	minimize	 energy	waste.	 For	 example,	 the	 climate	 of	 the	 tropical	

climate	 zone	 (Zone	 1)	 including	 Hawaii,	 Puerto	 Rico,	 and	 the	 Virgin	 Islands	 is	 uniquely	

constant	at	high	temperatures	throughout	the	year,	so	traditional	HVAC&R	installation	found	

in	buildings	outside	of	the	tropical	environment,	like	heating	systems,	may	not	be	needed	

(IECC,	2015).	Thus,	materials	and	energy	used	for	installing	and	utilizing	the	heating	system	

can	be	saved.			

 

Figure	1.1	ASHRAE’s	Climate	Zone	Map	(ASHRAE,	2017).	
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1.2	Interaction	between	Buildings	and	Climate	Change	

The	 intergovernmental	 Panel	 on	 Climate	 Change	 (IPCC)	 has	 reported	 that	 global	

warming	is	likely	to	reach	1.5	°C	between	2030	and	2052	above	pre-industrial	levels	at	the	

current	increase	rate.		Human	activities	are	estimated	to	have	caused	about	0.8°C	to	1.2	°C	of	

warming	 thus	 far	 (IPCC,	 2018).	 Potential	 impacts	 and	 associated	 risks	 of	 climate	 change	

include	 an	 increase	 in	 mean	 temperature,	 extremes	 heat,	 heavy	 precipitation,	 and	 the	

probability	of	drought	and	precipitation	deficits	in	some	regions	(IPCC,	2018).	Heatwaves	in	

Europe	 and	 North	 America	 are	 likely	 to	 become	more	 intense	 and	 longer-lasting	 in	 the	

second	half	of	the	21st	century	(Meehl	&	Tebaldi,	2004).	With	the	increase	in	temperature,	

more	precipitation	occurs	as	rain	instead	of	snow,	and	snow	melts	earlier.	This	results	 in	

increased	runoff	and	risk	of	flooding	in	early	spring	and	increased	risk	of	drought	in	summer	

with	greater	surface	evaporation	due	to	warming	(Trenberth,	2011).	

Many	studies	have	linked	the	effects	of	rising	temperatures	on	building	energy	use.	Due	

to	the	higher	temperatures,	the	U.S.	national	CDDs	are	expected	to	rise	by	540	to	670	degree	

days	(32%	to	43%)	during	the	period	of	2005	to	2050	(McFarland	et	al.,	2015).	This	requires	

greater	 electricity	 supply	 for	 buildings	 to	 operate	 space	 cooling	 systems.	 Studies	 show	a	

uniformly	 higher	 electricity	 demand	 in	 the	 future	 to	 meet	 the	 increased	 need	 for	 air	

conditioning	 (Hadley	 et	 al.,	 2006;	 Rosenthal	 et	 al.,	 1995).	 Under	 a	 scenario	 with	 global	

temperatures	rising	by	1.7	°C	from	2005	to	2050,	US	electricity	demand	in	2050	is	1.6%	to	

6.5%	higher	than	a	control	scenario	with	global	temperature	rising	by	0	°C	(McFarland	et	al.,	

2015).	When	similar	studies	were	done	at	the	state	level,	the	impacts	of	high	temperatures	

on	 building	 energy	 are	 even	 more	 significant	 (Huang	 &	 Gurney,	 2016).	 High	 relative	
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humidity	in	conjunction	with	high	temperature,	also	affects	electricity	demand	because	the	

perceived	 temperature	 can	 be	 higher	 in	 such	 meteorological	 conditions	 and,	 as	 a	

consequence,	the	use	of	air	cooling	appliances	increase	(Apadula	et	al.,	2012).			

On	the	other	hand,	building	emissions	contribute	to	global	warming	through	two	main	

pathways.	The	first	is	the	“operational	carbon	emissions”	that	comes	from	day-to-day	energy	

use,	 including	HVAC&R	systems	and	powering	 lighting	(Diana,	2019).	Operating	HVAC&R	

systems	contribute	to	greenhouse	gas	(GHG)	emissions	through	direct	refrigerant	emissions	

and	indirect	CO2	emissions	(Ashrae,	2018).	The	second	pathway	is	the	“embodied	carbon	of	

a	building”,	referring	to	the	amount	of	carbon	generated	during	building	construction.	This	

pathway	 also	 considers	 the	 fate	 of	 building	 materials	 after	 disposal.	 Examples	 include	

manufacturing	and	transporting	building	materials,	as	well	as	the	disposal	of	construction	

waste	(Diana,	2019).	In	2010	buildings	accounted	for	32%	of	total	global	final	energy	use,	

19%	 of	 energy-related	 GHG	 emissions,	 and	 approximately	 one-third	 of	 black	 carbon	

emissions	(Ürge-Vorsatz	et	al.,	2014).	In	the	United	States,	buildings	and	their	construction	

together	account	for	40%	of	energy	consumption	(Diana,	2019).		

Overall,	 building	 HVAC&R	 systems	 use	 are	 a	 big	 source	 of	 GHG	 emissions	 and	 are	

contributing	 to	global	warming.	Rising	 temperature	as	a	result	of	global	warming	 in	 turn	

affect	building	emissions	by	changing	the	usage	of	HVAC&R.	With	the	growing	frequency	of	

extreme	 weather	 events	 due	 to	 climate	 change,	 new	 buildings	 designed	 for	 the	 present	

climate	will	be	unsuitable	and	vulnerable	for	the	future	climate	and	therefore	affect	the	usage	

of	HVAC&R	negatively.	The	cycle	can	be	broken	if	new	buildings	are	well-adapted	for	the	

right	future	climate.	Building	suitable	for	the	local	climate	can	minimize	indoor	energy	usage	
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and	optimize	energy	efficiency	by	making	full	use	of	natural	resources.	For	example,	natural	

ventilation	can	be	driven	by	local	conditions	without	using	mechanical	systems	if	designers	

know	and	take	advantage	of	air	pressure	and	airflow	around	the	building.	Energy-efficiency	

measures,	like	improving	roof	and	wall	insulation,	upgrading	the	water-cooled	chillers,	and	

installing	ventilation	energy	recovery	wheels,	can	also	reduce	the	cooling	and	heating	loads	

during	hot	summers	and	cold	winter	by	reducing	the	amount	of	energy	used	for	cooling	and	

heating	equipment	(Schuetter	et	al.,	2014).	Thus,	 it	 is	 important	to	consider	the	effects	of	

climate	change	when	calculating	building	design	conditions	from	weather	elements.	The	first	

step	of	adapting	the	new	buildings	for	the	future	climate	is	to	understanding	climate	change.		

1.3	Climate	Models	

Climate	 models,	 also	 known	 as	

General	Circulation	Models	(GCMs),	

are	 computer-based	 simulations	

that	 use	 quantitative	 methods	 to	

simulate	 the	 interaction	 of	 the	

important	 climate	 drivers	

including	 the	 atmosphere,	 ocean,	

land	surface	and	sea	ice.	Figure	1.2	

shows	the	concepts	used	in	climate	

models.	To	run	a	model,	scientists	

divide	the	planet	into	thousands	of	

3-dimensional	 grid	 cells.	 Each	 of	

       

Figure	 1.2	 the	 concepts	 used	 in	 climate	 models	
(NOAA,	2007).		
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these	grid	cells	can	be	represented	by	equations	based	on	fundamental	laws	of	physics,	fluid	

motion,	and	chemistry	(NOAA,	2007).	Atmospheric	models	calculate	winds,	heat	 transfer,	

radiation,	relative	humidity,	and	surface	hydrology	with	each	grid	and	evaluate	interactions	

with	neighboring	points	(NOAA,	2007).	The	Coupled	Model	Intercomparison	Project	(CMIP)	

studies	the	output	of	coupled	GCMs	and	assesses	their	strengths	and	weaknesses	to	improve	

future	models.	The	fifth	phase	of	CMIP	(CMIP5)	is	the	most	current	and	extensive	version,	

offering	a	multi-model	perspective	of	simulated	climate	change	and	climate	variability	and	

providing	a	freely	available	state-of-the-art	multi-model	dataset	(Taylor	et	al.,	2012).	

A	 set	 of	 scenarios	 known	 as	 Representative	 Concentration	 Pathway	 (RCPs)	 is	 GHG	

concentration	 trajectory	 adopted	 by	 the	 IPCC	 to	 provide	 a	 range	 of	 possible	 future	 for	

atmospheric	compositions	(R.	Moss	et	al.,	2008;	R.	H.	Moss	et	al.,	2010).	Four	main	pathways	

including	RCP	2.6,	RCP	4.5,	RCP	6.0,	and	RCP	8.5	were	used	by	the	IPCC	Fifth	Assessment	

Report	 (AR5)	 for	 climate	 modeling	 and	 research	 (IPCC,	 2014).	 These	 four	 GHG	

concentration-dependent	pathways	are	 labeled	after	a	possible	 range	of	 radiative	 forcing	

values	in	2100	(2.6,	4.5,	6.0	and	8.5	W/m2,	respectively).	Each	pathway	provides	a	different	

estimation	for	global-mean	surface	temperature	increases,	from	1.5°C	for	RCP	2.6	to	4.5°C	

for	RCP8.5,	relative	to	pre-industrial	levels	(Meinshausen	et	al.,	2011).	

The	 resolution	of	GCMs	participating	 the	 fifth	 IPCC	ranges	 from	2.8°	by	2.8°	 to	0.5°	

by	0.5°	(Vavrus	et	al.,	2011;	Zhao	et	al.,	2009),	which	is	not	sufficient	for	regional	climate	

processes	 of	 10-15km	 (1°	 near	 the	 equator	 is	 equivalent	 to	 about	 111	km).	 Regional	

extremes	are	often	muted	by	GCMs	due	to	their	relatively	coarse	resolution	(Sillmann	et	al.,	

2013).	Downscaling	methods	can	solve	this	issue	by	extracting	high-resolution	information	
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from	 GCMs.	 Downscaling	 methods	 can	 be	 characterized	 as	 dynamical	 or	 statistical:	

dynamical	downscaling	methods	use	a	higher	resolution	model	that	is	forced	by	the	large-

scale	 GCMs	 (Giorgi,	 2006),	 while	 statistical	 downscaling	 develops	 large-	 and	 small-scale	

relationship	from	historical	data	and	applies	this	relationship	to	adjust	large-scale	data	down	

to	local	scale.	Downscaling	methods	provide	high-resolution	data	for	researchers	to	better	

study	regional	climate	processes.	

1.4	Focus	of	the	Study				

Where	ASHRAE	climate	design	conditions	are	calculated	based	on	historical	weather	

observations,	buildings	designed	today	are	subjected	to	the	climate	of	the	future.	Thus,	it	is	

important	 and	 necessary	 to	 update	 ASHRAE	 climate	 design	 conditions	 by	 including	 the	

effects	of	 climate	 change	 so	 the	design	and	performance	of	buildings	 can	adapt	 to	 future	

climate.	 In	other	words,	one	can	use	ASHRAE’s	calculation	methods	but	replace	historical	

weather	 data	 with	 future	 weather	 data	 to	 produce	 a	 future	 design	 standard.	 AHSRAE’s	

calculation	 is	provided	on	an	hourly	basis,	which	is	challenging	for	many	model	products	

because	1)	the	data	volume	would	be	overwhelming	(Taylor	et	al.,	2012),	and	2)	it	is	difficult	

to	capture	realistic	variance	when	downscaling	large-scale	climate	data	to	local-scale.	This	

study	 will	 address	 the	 issue	 of	 getting	 future	 hourly	 data	 by	 using	 a	 new	 probabilistic	

downscaled	data	set	and	a	novel	rescaling	method.		

One	goal	of	this	study	is	to	produce	climate-based	design	standards	for	ongoing	UW	

campus	building	constructions,	so	the	new	UW	buildings	can	be	well-adapted	for	the	future	
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climate	in	Wisconsin.	This	work	in	turn	developed	a	meteorology	that	maybe	directly	applied	

to	cities	in	the	Eastern	U.S.	and	extended	to	cities	around	world.		

In	 this	 study,	 ASHRAE-equivalent	 climate	 design	 conditions	were	 produced	 for	 the	

mid-	and	 late-	century	under	alternative	emission	scenarios	(RCP4.5	and	RCP	8.4).	These	

further	metrics	were	calculated	to	answer	the	following	questions:		

• What	are	the	meteorological	based	metrics	most	sensitive	to	climate	change?		

• How	do	cooling	degree	days	change	with	time	throughout	the	21st	century?		

• How	will	the	trend	of	cooling	degree	days	change	under	different	emission	scenarios?		

This	 study	 involves	 four	 major	 tasks,	 including	 1)	 reproducing	 ASHRAE’s	 climate	

condition	 chart,	 2)	 developing	 future	 climate	 conditions	 on	 hourly	 basis,	 3)	 rescaling	

ASHRAE	chart	for	future	climate	conditions,	and	4)	analyzing	future	metrics.	Descriptions	of	

observed	 and	 downscaled	 datasets,	 and	 rescaling	 and	 calculation	 methodologies	 are	

discussed	in	Chapter	2.	All	results	are	presented	in	Chapter	3.	Chapter	4	gives	conclusions	of	

this	study.		
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Chapter	2	

Data	and	Methodology		

To	 complete	 our	work	 of	 producing	 ASHRAE-equivalent	 climate	 conditions	 for	 the	

future,	we	took	three	steps.		

The	 first	 step	 is	 to	recalculate	 the	2013	ASHRAE	Climatic	Design	Conditions	 for	 the	

Madison/Dane	County	station,	over	the	period	from	1986	to	2010.	The	goal	of	this	step	is	to	

make	sure	we	understand	ASHRAE’s	calculation	methods	correctly.		

The	 second	 step	 is	 to	 develop	 hourly	 downscaled	 data.	 In	 this	 step	we	will	 rescale	

downscaled	data	to	hourly	basis	to	ensure	the	consistency	with	ASHRAE’s	calculation.		

In	the	third	step,	we	replace	the	historical	meteorological	data	that	ASHRAE	used	with	

a	 downscaled	data	 to	 obtain	 a	 climate	 design	 conditions	 for	 the	 future.	 To	 further	 study	

future	climate	design	conditions,	we	evaluate	the	results	to	assess	what	metrics	are	most	

sensitive	to	climate	and	how	building	design	will	adapt	to	the	21st	century.	

2.1	Reproducing	ASHRAE	Climate	Design	Conditions		

2.1.1	Temperature	Metrics	

Data	Source	

The	Integrated	Surface	Data	(ISD)	is	used	for	the	temperature	metrics	in	2013	ASHRAE	

Climatic	Design	 Conditions.	 The	 ISD	 data,	 produced	 by	 the	National	 Climate	Data	 Center	
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(NCDC),	 consists	 of	 global	 hourly	 and	 synoptic	 observations	 compiled	 from	 numerous	

sources	into	a	common	American	Standard	Code	for	Information	Interchange	(ASCII)	format	

(NOAA,	2020).	In	ASHRAE’s	work,	all	temperature	metrics	are	calculated	on	an	hourly	basis.	

For	this	study,	hourly	temperature,	wind	magnitude	and	wind	direction	data	were	acquired	

for	the	Madison/Dane	County	station	over	a	period	from	1986	to	2010.	One	missing	year	

(1996)	for	this	station	is	omitted,	since	ASHRAE	has	not	given	specific	information	on	how	

to	address	the	missing	year	for	the	Madison/Dane	county.	However,	ASHRAE’s	handbook	

mentions	that	while	the	calculation	period	in	most	cases	is	25	years,	the	actual	number	of	

years	for	a	given	station	can	be	as	little	as	8	years.		

Table	2.1	shows	the	basic	information	of	the	Madison/Dane	County	station	in	the	ISD	

dataset.	To	make	sure	all	the	data	we	used	would	be	valid,	suspicious	and	erroneous	data	

indicating	by	quality	code	of	2,	3,	6,	or	7	(NCDC,	2015)	and	a	missing	value	of	9999	and/or	

999	 were	 replaced	 by	 a	 linear	 interpolation	 to	 provide	 the	 most	 complete	 time	 series	

possible.	Duplicating	times	were	all	replaced	by	the	average	of	duplicated	times.	Finally,	all	

data	were	linearly	interpolated	in	time	to	the	nearest	hour.	Further	details	of	data	quality	

check	and	screen	criteria	in	ASHRAE’s	work	(ASHRAE,	2013a)	are	provided	in	the	Appendix	

A.3.	

Table	2.1	Madison	Station	Information	from	ISD	

	

STATION	

	

NAME	

	

STATE	

	

CALL_SIGN	

	

LATITUDE	

	

LONGITUDE	

	

ELEVATION	

	

72641014837	 MADISON	DANE	CO	
REGIONAL	AIRPORT	

	

WI	

	

MSN	

	

43.1405	

	

-89.3452	

	

264	(meter)		
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Mathematical	Equations	for	ASHRAE	variables	

The	same	methods	as	described	in	the	2013	ASHRAE	Climate	Conditions	were	used	to	

recalculate	ASHRAE	metrics.	Basic	meteorological	variables	including	dry-bulb	temperature,	

dew	point	temperature,	wind	speed,	wind	direction,	and	elevation	were	directly	taken	from	

the	ISD	dataset.	Depending	on	dry-bulb	temperature,	dew	point	temperature	and	elevation,	

other	heating/cooling	and	humidification/dehumidification	variables	were	calculated.	The	

following	equations	are	used	for	the	variables	directly	included	in	ASHRAE’s	chart.	There	are	

some	 variables	 used	 during	 calculation	 that	 are	 not	 contained	 in	 ASHRAE’s	 chart;	 the	

mathematical	equations	to	calculate	these	variables	are	provided	in	the	Appendix	Section.	

A.4.	

Humidity	ratio/mixing	ratio	(W)	is	calculated	based	on	the	partial	pressure	of	water	

vapor	as	variable	p!,	and	the	pressure,	expressed	as	a	variable	p.	Equations	for	calculating	

p!	and	p	are	included	in	the	Appendix	Section.	A.4.	

W = 0.621945 ∗ "!
"#"!

																																																																	(2.1)	

Enthalpy	(h)	is	calculated	based	on	humidity	ratio	(W)	and	dry-bulb	temperature	(t)	

with	a	unit	of	kJ/kg:	

h = 0.240 ∗ t +W ∗ (1061 + 0.444 ∗ t)																																												(2.2)	

The	 calculation	 of	wet-bulb	 temperature	 (t*)	 is	more	 complicated	 since	 it	 involves	

nonlinear	equations.	The	equations	we	used	to	calculate	t*	are	based	on	humidity	ratio	W	

and	humidity	ratio	by	wet-bulb	temperature	Ws*,	where	Ws*	is	dependent	on	t*	itself.	In	this	
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case,	we	solved	t*	numerically	by	subtracting	equation	2.1	(a	function	of	known	parameters)	

from	2.3	or	2.4	(a	function	of	t*)	and	setting	the	result	equation	to	zero.	The	zero	crossing	

the	resulting	function	is	solved	by	using	the	fzero()	function	in	MATLAB	(R2015a).	It	should	

be	noted	that	t*	calculated	by	this	equation	is	in	units	of	°F,	while	t*	in	the	chart	is	in	units	

of	°C.	Unit	conversion	equations	are	also	included	in	Appendix	Section.	A.4.										

For	temperature	<32	°F:	

W =	 (%&&'#'.')∗+
∗)-.∗#'.&)'∗(+/0"#+∗)

%&&'1'.)))∗+/0"#'.)2∗+∗
																																																		(2.3)	

For	temperature	>32	°F:	

W =	 (%'34#'.556∗+
∗)-.∗#'.&)'∗(+/0"#+∗)

%'341'.)))∗+/0"#+∗
																																																		(2.4)	

Monthly	heating	degree	days	(HDD)	and	cooling	degree	days	(CDD)	are	calculated	as	

the	sum	of	the	differences	between	daily	average	temperature	and	the	base	temperature	in	

a	given	month.	N	in	equations	(2.5)	and	(2.6)	 indicates	the	number	of	days	 in	the	month.	

T78./	is	the	reference	temperature	(10.0°C	and	18.3°C),	and	T49	is	the	daily	mean	temperature,	

calculated	by	averaging	the	maximum	and	minimum	temperature	of	the	day.	

HDD = ∑ (T78./ − T49):
9;% 																																																													(2.5)																											

CDD = ∑ (T49 − T78./):
9;% 																																																													(2.6)	

Monthly	 cooling	 degree	 hours	 (CDH)	 are	 calculated	 as	 the	 sum	 of	 the	 differences	

between	hourly	temperature	and	the	base	temperature	in	a	given	month.	N	in	the	equation	
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(2.7)	is	the	number	of	hours	in	the	month.	T78./	is	the	reference	temperature	(23.3°C	and	

26.7°C),	and	T9	is	the	hourly	temperature	in	the	day.	

CDH = ∑ (T9 − T78./):
9;% 																																																													(2.7)	

Threshold	exceedance	calculation	method	

Many	 variables	 are	 presented	 corresponding	 to	 different	 percentages	 of	 annual	

cumulative	frequency	of	occurrence:	0.4,	1.0,	and	2.0%	for	warm	conditions	and	99.0	and	

99.6%	for	cold	conditions.	For	the	simple	threshold	exceedance	calculations,	ASHRAE	binned	

hourly	data	into	frequency	vectors,	then	derived	from	the	binned	data	the	design	condition	

with	the	probability	of	being	exceeded	a	certain	percentage	of	the	time.	In	this	study,	we	used	

the	same	method	and	sorted	all	hourly	data	in	descending	order	to	obtain	the	exceed	value	

in	terms	of	different	thresholds.	For	the	more	complicated	case	of	mean	coincident	values,	

we	first	find	all	hours	for	which	the	exceedances	exist,	and	then	average	the	mean	coincident	

variables	 at	 those	 time.	 For	 example,	 to	 calculate	 annual	 mean	 coincident	 dry-bulb	

temperature	 at	 99.6%	 dew	 point	 temperature,	 we	 first	 find	 the	 threshold	 dew	 point	

temperature	corresponding	to	99.6%	annual	cumulative	frequency	of	occurrence	(-26°C),	

and	then	find	all	 times	for	which	dew	point	temperatures	exceed	-26°C,	and	average	dry-

bulb	temperatures	for	these	times.	

2.1.2	Precipitation	Metrics	

Several	sources	of	data,	including	surface	data	and	model	data,	were	used	by	ASHRAE	

for	 precipitation	 metrics	 calculations.	 Among	 these	 sources,	 surface	 data	 were	 used	

whenever	possible	and	compensated	with	other	sources	when	surface	data	was	unavailable	
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(ASHRAE,	 2013b).	 According	 to	 ASHRAE’S	 data	 selection	 criteria,	 we	 used	 the	 Global	

Historical	Climatology	Network	(GHCN)	data	for	precipitation	metrics.	Monthly	precipitation	

is	directly	retrieved	from	version	2	of	GHCN	monthly	data.		

The	GHCN	dataset	is	an	integrated	database	of	climate	summaries	from	ground-based	

stations	across	the	globe	and	it	is	obtained	from	more	than	20	sources.	This	data	set	includes	

both	'adjusted'	and	'unadjusted'	data.	The	adjusted	set	consists	of	data	where	adjustments	

were	made	by	scientists	to	account	for	large	inhomogeneities	discovered	in	the	unadjusted	

datasets	(ASHRAE,	2013b).	ASHRAE	used	the	adjusted	GHCN	data	whenever	possible,	as	it	

is	considered	to	be	the	best	available	for	calculating	climate	design	conditions.	As	a	result,	

we	used	adjusted	GHCN	monthly	data	in	our	work.		

The	precipitation	metric	contains	annual	and	monthly	average	precipitation,	standard	

deviation,	 and	maximum	and	minimum	values.	As	mentioned	before,	monthly	 values	 are	

directly	 retrieved	 from	 GHCN	 data	 and	 annual	 values	 and	 other	 statistical	 variables	 are	

calculated	based	on	monthly	values.		

2.2	Producing	Future	Climate	Design	Conditions		

2.2.1	Climate	Projection	

The	University	of	Wisconsin	Probabilistic	Downscaled	(UWPD)	Data	(Lorenz,	2015)	is	

used	in	our	work.	The	UWPD	data	is	constructed	using	a	probabilistic	approach,	meaning	the	

large-scale	climate	model	quantifies	a	range	of	local-scale	variables	that	could	occur,	instead	

of	the	precise	value	of	the	downscaled	variables.	The	UWPD	method	uses	a	generalized	linear	

model	to	predict	the	parameters	of	the	underlying	probability	distribution	of	station-based	
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observations,	using	large-scale	climate	variables	as	predictors.	Thus,	the	effective	result	of	

the	UWPD	downscaling	routine	is	daily	varying	probability	density	functions	(PDFs)	of	the	

variables	(KIRCHMEIER-YOUNG	et	al.,	2016).	By	using	this	method,	the	UWPD	produced	the	

monthly	cumulative	distribution	functions	(CDFs)	for	daily	station	maximum	and	minimum	

temperature	 and	precipitation	 over	 the	 eastern	U.S.	 (east	 of	Rockies)	 as	well	 as	 some	of	

southern	Canada.	The	resulting	distributions	are	interpolated	to	spatial	resolution	of	0.1°	by	

0.1°,	 and	 continuous	 monthly	 resolution	 from	 1950	 to	 2100.	 To	 be	 noted,	 because	 the	

distributions	 are	 interpolated	 instead	 of	 actual	 values,	 they	 still	 represent	 point-based	

station	data,	and	are	thus	very	well	suited	to	be	used	for	the	analysis	in	this	study.		

The	UWPD	dataset	was	 selected	 because	 1)	 it	was	 downscaled	 from	more	 than	 20	

GCMs	and	avoided	the	bias	from	one	single	model,	and	2)	it	outputs	the	likelihood	of	local	

variables	 to	 preserve	 realistic	 extremes.	 In	 this	 study,	 the	 monthly	 UWPD	 CDFs	 which	

represent	daily	values	are	used	to	rescale	ISD	historical	hourly	observations	(1986-2010)	to	

the	 mid-	 (2040	 to	 2060)	 and	 late-	 (2080	 to	 2100)	 century,	 under	 high	 (RCP	 8.5)	 and	

moderate	(RCP4.5)	emission	scenarios.		

2.2.2	Data	Rescaling		

Since	 ASHRAE	 calculations	 are	 based	 on	 historical	 hourly	 data,	we	 need	 to	 rescale	

historical	data	so	that	it	represents	future	climate	conditions.	The	rescaling	process	consists	

of	 four	 steps,	 1)	 obtaining	 daily	 maximum/minimum	 temperature	 from	 historical	 (ISD)	

hourly	 observations	 and	 computing	 the	 historical	 fractional	 relationship	 between	 hourly	

temperature	and	daily	maxima/minima,	2)	obtaining	the	UWPD	data	that	is	appropriate	for	

a	particular	day	of	the	years,	3)	rescaling	the	historical	daily	maximum/minimum	values	to	



 17 

future	daily	maxima/minima	by	using	the	UWPD	CDFs,	and	4)	applying	the	historical	diurnal	

cycle	fraction	obtained	from	step	1	into	the	future	daily	maximum/minimum	temperature	

obtained	from	step	2	to	compute	the	future	hourly	data.				

Step	1.	Obtaining	a	historical	relationship	between	the	hourly	and	daily	value	

ISD	hourly	observations	were	adjusted	with	respect	to	standard	time	(UTC)	to	 local	

time	by	subtracting	6	hours	from	each	time	stamp.	Next,	the	daily	maximum	and	minimum	

temperature	were	obtained	for	each	day	(midnight	to	11pm	local	time).	Then,	equation	(2.8)	

was	 used	 to	 calculate	 the	 fractional	 relationship	 between	 hourly	 and	 daily	

maximum/minimum	temperature	for	each	day.	The	relationship	is	indicated	by	parameter	

𝑎	in	equation	(2.8),	which	varies	for	each	hour.	

𝑎<=>?@ = (𝑇<=>?@ − 𝑇𝑚𝑖𝑛<ABC)/(𝑇𝑚𝑎𝑥<ABC − 𝑇𝑚𝑖𝑛<ABC)																								(2.8)	

The	idea	behind	this	equation	is	shown	in	Figure	2.1.	The	relationship	between	every	

single	hour	in	a	given	day	and	the	minimum	temperature	for	that	day	can	be	represented	by	

some	fractions	of	the	difference	between	the	maximum	and	minimum	temperature	for	that	

day.	This	means	we	can	produce	the	observed	diurnal	cycle,	which	will	be	more	realistic	than	

a	modeled	diurnal	cycle.		
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Step	2.	Obtaining	the	UWPD	CDFs	for	a	given	calendar	day	

The	UWPD	dataset	contributes	CDFs	of	daily	maximum	and	minimum	temperature	for	

a	particular	time	period,	and	for	a	particular	calendar	month.	Thus,	for	the	historical	(1981-

2010)	 period,	 the	 UWPD	 dataset	 contributes	 24	 individual	 PDFs,	 one	 for	 each	 variable	

(maximum	and	minimum	temperature)	and	one	for	each	calendar	month.	It	is	important	to	

remember,	though,	that	the	CDFs	themselves	represent	the	distribution	of	daily	maximum	

and	minimum	temperature,	and	as	such	retain	the	full	variance	(including	extremes)	of	the	

underlying	daily	data.		

In	this	step,	we	adjust	the	calendar-month	UWPD	CDFs	so	that	they	are	representative	

of	a	given	calendar	day.	This	step	avoids	abrupt	jumps	in	the	CDF	that	would	occur	near	the	

	

Figure	2.1	Hourly	temperature	and	the	diurnal	cycle	fractions	for	July	1st,	1986.	
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ends	of	the	month,	say,	from	September	30th	to	October	1st.	The	adjustment	from	mid-month	

to	calendar	day	CDFs	was	accomplished	via	linearly	interpolating	the	calendar	month	CDF	

(which	is	representative	of	mid-month	conditions)	to	the	particular	calendar	day	via	(2.9):	

𝐶𝐷𝐹<ABC = 𝑏<ABC × 𝐶𝐷𝐹<D>EF= + (1 − 𝑏<ABC) × 𝐶𝐷𝐹GD>EF=																							(2.9)	

Where	the	parameter	𝑏	is	the	temporal	fractional	scaling	for	each	day.	This	function	

means	that	CDF	for	a	certain	day	(𝐶𝐷𝐹<ABC)	is	determined	by	1)	the	CDF	of	the	current	month	

(𝐶𝐷𝐹<D>EF=),	2)	the	adjacent	month	that	is	closest	to	the	given	day	(𝐶𝐷𝐹GD>EF= ,	where	j=i-1	if	

iday	falls	before	the	middle	of	month	i,	and	j=i+1	if	iday	falls	after	the	middle	of	month	i),	and	

3)	 the	 temporal	 scaling	 (𝑏<ABC )	 for	 this	 day.	 For	 example,	 if	 we	 want	 to	 get	 CDF	 of	 the	

maximum	temperature	for	August	10,	we	take	the	weighted	average	of	the	monthly	CDFs	of	

August	and	July,	since	July	is	closer	to	this	day	than	September.	If	we	want	the	CDF	of	the	

maximum	temperature	for	August	25,	 then	we	would	compute	a	weighted	average	of	 the	

monthly	CDFs	of	August	and	September.	The	weighting	b	equals	to	1	for	the	days	which	are	

exactly	 in	 the	 middle	 of	 the	 month,	 like	 Aug	 16th,	 and	 approach	 b	 equals	 to	 0.5	 at	 the	

beginning	and	end	of	the	month.	Thus,	we	have	a	unique	and	smoothly	varying	CDF	for	each	

calendar	 day.	 This	 weighted	 average	 is	 applied	 separately	 to	 CDFs	 of	 maximum	 and	

minimum	temperature.		

Step	3.	Rescaling	historical	values	to	future	values	by	using	UWPD	CDFs		

We	use	a	CDF	rescaling	to	obtain	 future	maximum	and	minimum	temperature	 from	

historical	data.	The	whole	process	 in	this	step	can	be	explained	by	the	example	shown	in	

Figure	2.2.	Figure	2.2	is	the	UWPD	CDFs	for	maximum	temperature	in	one	month.	Two	CDFs	
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represent	historical	(1986-2010)	and	future	(2041-2060)	scenarios,	respectively.	Assuming	

a	 historical	 maximum	 temperature	 of	 -10°C	 on	 a	 given	 day,	 our	 first	 step	 is	 to	 find	 the	

exceedance	probability	(blue	line)	for	this	temperature,	and	this	process	is	represented	by	

the	red	dashed	line	on	the	historical	CDF.	We	maintained	exceedance	probability	and	shift	it	

from	 the	historical	 CDF	parallel	 to	 the	 future	CDF.	 	 Finally,	we	obtain	 the	 corresponding	

future	maximum	 temperature	 for	 the	 day	 based	 on	 the	 exceedance	 temperature	 for	 the	

maintained	 exceedance	 probability,	 this	 process	 is	 denoted	 by	 the	 blue	 dashed	 line.	 The	

rescaling	process	is	exactly	same	for	the	minimum	temperature,	except	we	use	the	minimum	

temperature	CDFs.		

	

Figure	2.2	UWPD	CDF	of	daily	maximum	temperature	for	historical	(red	lines)	and	
future	(black	lines)	scenarios.	
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Step	4.	Obtaining	future	hourly	values		

Knowing	 the	 future	 daily	 maximum/minimum	 temperature	 and	 assuming	 that	 the	

observed	diurnal	cycle	fractions	will	remain	the	same,	we	can	transform	the	equation	in	2.8	

to	another	form	(2.10),	in	which	the	future	hourly	temperature	can	be	calculated.	

𝑇<=>?@ = 𝑎<=>?@ ∗ 𝑇𝑚𝑎𝑥<ABC + (1 − 𝑎<=>?@) ∗ 𝑇𝑚𝑖𝑛<ABC																													(2.10)	

Where	𝑎<=>?@ ,	the	diurnal	fraction	between	hourly	and	daily	maximum/minimum	

temperature	for	each	day,	is	obtained	from	the	historical	data.		

2.2.3	Calculating	Future	Climate	Design	Conditions	

Finally,	we	have	the	future	hourly	data	in	the	same	format	as	the	historical	hourly	data.	

Figure	2.3	shows	the	time	series	of	historical	hourly	temperature	(blue	line),	and	the	mid-

century	hourly	temperature	(red	line)	that	is	rescaled	from	the	historical	temperature	for	a	

given	year.	This	 is	an	example	result	of	our	rescaling	work	under	RCP	4.5	scenario.	With	

climate	change,	hourly	 temperatures	 rise	during	 the	year	 in	 the	 future,	but	 the	historical	

annual	fraction	has	retained	in	the	future.	The	blue	line	represents	the	hourly	temperatures	

used	by	ASHRAE,	and	we	will	replace	them	the	future	hourly	temperature	represented	by	

the	red	line.	With	the	future	hourly	data	and	the	methods	that	were	utilized	in	Step	1(Section.	

2.2.2),	we	produced	future	climate	design	metrics	for	the	mid-	and	late-	century	under	high	

(RCP	8.5)	and	moderate	(RCP	4.5)	emissions	scenarios.	The	GCMs	that	are	used	for	different	

scenarios	(24	models	for	RCP	8.5	and	22	models	for	RCP	8.5)	are	listed	in	Table	2.2.	
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	Figure	 2.3	 Time	 series	 of	 historical	 (blue	 line)	 and	 future	 (red	 line)	 hourly	
temperature	for	a	year.	

	

Table	2.2	List	of	Models	used	for	difference	emission	scenarios			

Model	Name	 RCP	4.5	 RCP	8.5	 Reference	

ACCESS1-0	 X	 X	 (Ackerley	&	Dommenget,				
2016;	Collier	&	Uhe,	2012)	

ACCESS1-3	 X	 X	 (Collier	&	Uhe,	2012)	
CMCC-CESM	 	 X	 (Vichi	et	al.,	2011)	
CMCC-CM	 X	 X	 (Scoccimarro	et	al.,	2011)	
CMCC-CMS	 X	 X	 (Scoccimarro	et	al.,	2011)	
CNRM-CM5	 X	 X	 (Voldoire	et	al.,	2013)	
CSIRO-Mk3-6-0	 X	 X	 (Collier	et	al.,	2011)	
CanESM2	 X	 X	 (Chylek	et	al.,	2011)	
GFDL-CM3	 X	 X	 (Donner	et	al.,	2011)	
GFDL-ESM2G	 X	 X	 (Dunne	et	al.,	2012)	
GFDL-ESM2M	 X	 X	 (Dunne	et	al.,	2012)	
HadGEM2-CC	 X	 X	 (Collins	et	al.,	2011)	
IPSL-CM5A-LR	 X	 X	 (Dufresne	et	al.,	2013)	
IPSL-CM5A-MR	 X	 X	 (Dufresne	et	al.,	2013)	
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IPSL-CM5B-LR	 X	 X	 (Dufresne	et	al.,	2013)	
MIROC-ESM	 X	 X	 (S.	Watanabe	et	al.,	2011)	
MIROC-ESM-CHEM	 X	 X	 (S.	Watanabe	et	al.,	2011)	
MIROC5	 X	 X	 (M.	Watanabe	et	al.,	2010)	
MPI-ESM-LR	 X	 X	 (Block	&	Mauritsen,	2013)	
MPI-ESM-MR	 X	 X	 (Block	&	Mauritsen,	2013)	
MRI-CGCM3	 X	 X	 (Yukimoto	et	al.,	2012)	
MRI-ESM1	 	 X	 (Yukimoto	et	al.,	2011)	
NorESM1-M	 X	 X	 (Bentsen	et	al.,	2013)	
inmcm4	 X	 X	 (Volodin	et	al.,	2010)	

					

2.3	Further	Analysis	on	Future	Climate	Design	Conditions	

2.3.1	Sensitivity	Analysis	

To	better	study	how	climate	change	will	make	differences	in	building	design	variables	

in	the	21st	century,	we	compared	building	metrics	calculated	from	past	data	(1986-2010)	

and	from	projected	data	(2081-2100)	to	assess	what	metrics	are	most	sensitive	to	climate	

change.	 Two	 standards,	 absolute	 change	 and	 percentage	 change,	 will	 be	 used	 for	 the	

evaluation	due	to	the	various	magnitude	of	the	variables.	

Percent	difference	is	used	for	degree	days	and	hours,	and	precipitation	metrics,	and	

the	actual	difference	 is	used	 for	 the	 rest	of	 the	metrics.	The	reason	 that	we	use	different	

criteria	is	that	the	order	of	values	in	the	degree	days	and	hours	metric,	which	ranges	from	0	

to	104,	is	much	greater	than	the	order	of	values	in	other	metrics,	which	ranges	from	1	to	10.	

Thus,	using	the	same	standard	for	all	metrics	will	not	accurately	show	the	sensitivity	of	the	

metrics.	Further,	temperature	metrics	are	not	zero-based,	which	make	percent	differences	

meaningless	to	interpret	(e.g.	any	change	from	0°C	would	be	an	infinite	percent	difference,	
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which	makes	no	sense;	changing	to	Fahrenheit	scale	does	not	alleviate	the	problem,	and	a	

Kelvin	scale	would	be	meaningless	in	practice).		

Overall,	 the	 absolute	 and	 percentage	 differences	were	 calculated	 between	 building	

metrics	in	the	past	and	in	the	late	century.	Although	the	results	will	be	presented	in	different	

formats	(absolute	value	and	percent	value),	we	will	still	be	able	to	understand	the	level	of	

change	in	different	metrics	due	to	climate	change	and	learn	what	metrics	are	most	sensitive.		

2.3.2	Trend	of	Design	Variables	under	Different	Emission	Scenario	

We	will	also	show	how	sensitive	metrics	change	with	time	under	different	emission	

scenarios.	In	this	study,	cooling	degree	days	(CDD)	with	a	threshold	temperature	of	23.3°C	

was	examined.	CDD	by	decades	was	calculated	from	2020	to	2100	and	averaged	from	10	

years	before	and	after	the	year.	For	example,	the	value	for	2020	is	the	mean	of	values	from	

2010	to	2030,	and	the	value	for	2030	is	the	mean	of	values	from	2020	to	2040.	This	part	of	

the	study	shows	the	pattern	of	change	of	CDD	throughout	the	21st	century	under	different	

emission	scenarios.	
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Chapter	3	

Results	

3.1	Reproducing	ASHRAE	Climate	Design	Conditions	

The	 first	 result	 of	 this	 work	 is	 the	 recalculated	 the	 2013	 ASHRAE	 Climatic	 Design	

Conditions	for	the	Madison/Dane	County	station	from	1986	to	2010.	A	comparison	between	

our	work	and	ASHRAE’s	are	shown	and	analyzed	below.		

Absolute	 and	 percent	 difference	 are	 used	 to	 examine	 the	 consistency	 between	

ASHRAE’s	 and	 our	 results.	 Percentage	 difference	 is	 used	 for	 degree	 days	 and	hours,	 and	

precipitation	metrics,	and	the	actual	difference	is	used	for	the	rest	of	the	metrics	for	the	same	

reason	described	in	Section.	2.3.1.	To	be	noted,	absolute	and	percent	difference	were	used	

twice	in	this	study.	First	for	testing	our	reproducing	work,	which	compares	our	results	and	

ASHRAE’S,	and	then	for	sensitivity	analysis,	where	we	compare	past	and	future	results.		

3.1.1	Temperature	metrics	

Table	 3.1	 is	 a	 color-coded	 table	 showing	 the	 comparison	 of	 ASHRAE’s	 and	 our	

temperature	metrics.	The	colors	blue	and	green	refer	to	the	actual	difference	and	percent	

difference,	respectively.	The	light	blue	shows	difference	between	0.5°C	and	1°C,	and	the	dark	

blue	shows	differences	greater	 than	1°C.	For	 the	percent	difference	criteria,	 the	 light	and	

dark	green	shows	a	difference	between	1%	and	5%	and	greater	than	5%,	respectively.	The	

color	yellow	highlights	where	the	difference	is	smaller	than	0.5	°C	or	1%	or	where	there	is	
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no	difference.	In	general,	Table	3.1	shows	remarkable	agreement	between	our	calculation	

and	ASHRAE’s.	Some	differences	are	discussed	below.		

Among	all	variables,	degree	days	and	hours	are	the	metric	with	the	more	non-yellow	

color,	but	this	does	not	necessarily	indicate	less	consistency	for	this	metric.	Some	of	these	

gaps	are	caused	by	a	small	order	of	the	base	number	instead	of	an	incorrect	calculation.	For	

example,	 there	 are	 five	 variables	 in	 dark	 green,	 indicating	 that	 our	 results	 differ	 from	

ASHRAE’s	work	by	more	than	5%.	This	sounds	like	a	large	discrepancy,	but	in	reality,	our	

heating/cooling	degree	days	or	hours	are	only	1°C	more	or	less	than	ASHRAE’s	result.	Thus,	

a	large	percentage	does	not	necessarily	mean	there	is	a	problem	in	the	data	or	calculation	

methods.	 In	general,	our	method	does	tend	to	slightly	overestimate	CDD	and	CDH	during	

summer	months,	but	only	by	a	few	Degree	Celsius.		

Other	 metrics	 show	 more	 consistency	 than	 degree	 days	 and	 hours,	 with	 only	 12	

variables	 showing	 some	 gaps.	 The	 largest	 difference,	 1.3°C,	 occurred	 for	 a	 99.6%	mean	

coincident	dry-	bulb	temperature	and	a	minimum	value	of	50-year	minimum	return	period	

value	 of	 extreme	 dry-bulb	 temperature.	 Other	 differences	 are	 all	 smaller	 than	 1°C.	

Interestingly,	 for	 the	 extreme	 annual	 design	 conditions	 (the	 4th	 metric	 in	 Table	 3.1),	

relatively	large	differences	occur	for	minimum	n-year	return	period	values	of	extreme	dry-

bulb	temperature.	For	the	monthly	design	conditions,	differences	are	occurred	for	wet-bulb	

temperature	or	mean	coincident	wet-bulb	temperature.	

By	using	the	same	dataset	and	same	calculation	methods,	we	expected	to	see	identical	

results	 to	 ASHRAE	 (all	 yellow	 color),	 but	 unexpected	 discrepancies	 appeared	 in	 some	

metrics.	 A	 possible	 explanation	 may	 be	 the	 way	 we	 dealt	 with	 the	 missing	 year.	 Since	
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ASHRAE	only	gives	a	general	instruction	for	all	sites	instead	of	specific	information	for	each	

station,	we	are	not	sure	about	how	they	dealt	with	1996	(the	missing	year)	over	Madison.	It		

	
Table	3.1	Comparison	of	temperature	design	conditions	by	ASHRAE	(black)	and	by	
UW	(red).			
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is	 possible	 that	 ASHRAE	 substituted	 the	 year	 using	 alternative	 datasets	 or	 performed	 a	

special	integration.	This	might	cause	discrepancies	between	our	work	and	ASHRAE’s	since	

we	 omitted	 the	missing	 year.	 Another	 possibility	 is	 that	 ISD	might	 have	 upgraded	 their	

observations	since	2013	when	ASHRAE	used	their	data.	Overall,	we	were	able	to	successfully	

reproduce	 temperature	metrics	with	most	 variables	 that	 are	 remarkably	 consistent	with	

ASHRAE’s	results.	

3.1.2	Precipitation	metrics	

The	precipitation	metric	calculated	by	ASHRAE	(black),	UW-Madison/GHCN	(red),	and	

their	percentage	difference	(purple)	are	shown	in	Table	3.2.	As	with	the	temperature	metrics,	

the	yellow	color	indicates	overall	consistency	with	a	difference	smaller	than	20%.	The	light	

and	the	dark	green	highlight	where	the	differences	range	from	20%	to	50%,	and	where	the	

differences	are	greater	than	50%,	respectively.		

The	mean	precipitation	for	an	individual	month	is	directly	derived	from	GHCN	data.	

Although	our	results	are	slightly	different	from	ASHRAE’s,	the	differences	are	smaller	than	

20%.	The	discrepancies	for	standard	deviation	in	February,	March,	May,	July,	and	September	

are	within	50%.	Significant	bias	greater	than	50%,	occurred	for	extreme	values,	especially	

for	the	minimum	precipitation	metric.	Nine	months	in	this	metric	show	a	large	percentage	

difference,	 with	 six	 of	 them	 larger	 than	 50%.	 While	 it	 may	 appear	 that	 this	 metric	

inconsistent,	the	order	of	values	made	a	big	difference.	Although	they	are	highlighted	in	dark	

blue	and	show	a	difference	of	up	to	80%,	the	real	differences	in	the	minimum	precipitation	

from	January	to	March	are	only	4,	2,	and	5	mm	for	each	month,	respectively.	Considering	the	

average	precipitation	in	these	months	is	around	30	to	50	mm,	differences	smaller	than	5	mm	
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can	 be	 ignored.	 For	 other	 dark	 green	 cells	 in	 the	minimum	 and	maximum	 precipitation	

metric,	the	real	differences	are	also	significant.	For	the	maximum	precipitation	in	May	and	

November	in	particular,	the	amount	of	rainfall	by	GHCN	(275	and	190	mm)	is	as	twice	much	

as	what	ASHRAE	provided	(159	and	100	mm).			

The	results	for	reproducing	precipitation	metrics	are	not	as	consistent	as	temperature	

metrics.	 According	 to	 the	 ASHRAE	 handbook,	 the	 ground	 based	 GHCN	 data	 is	 most	

recommended,	so	we	used	version	2	monthly	GHCN	data	for	Madison’s	precipitation	metrics	

calculation.	As	mentioned	before,	the	monthly	precipitation	is	directly	retrieved	from	GHCN	

monthly	 data	 without	 any	 additional	 processing.	 However,	 we	 see	 the	 amount	 of	

precipitation	 differs	 for	 reasons	 that	 may	 be	 similar	 to	 the	 temperature	 metrics.	 While	

ASHRAE	has	multiple	data	sources	 for	precipitation,	we	elected	 to	use	 the	recommended	

ground	 based	 GHCN	 dataset.	 However,	 even	 the	 monthly	 precipitation	 from	 GHCN	 is	

different	from	ASHRAE.	

		

Table	3.2	Comparison	of	precipitation	design	conditions	by	ASHRAE	(black),		by	GHCN		(red),	
and	their	percentage	difference	(purple).	
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To	better	study	the	precipitation	inconsistency,	we	compared	observed	monthly	mean,	

maximum	and	minimum	precipitation	data	 from	GHCN	and	ASHRAE	with	estimates	 from	

realizations	 from	 the	 UWPD.	 Note	 that	 in	 addition	 to	 the	 CDFs,	 the	 UWPD	 includes	 14	

precipitation	“realizations”	for	each	of	model	simulations	(22	for	RCP	4.5	and	24	for	RCP	8.5	

scenario),	 yielding	 a	 sample	 of	 308	 (RCP	 4.5)	 and	 336	 (RCP	 8.5)	 to	 draw	 from.	 These	

realizations	allow	us	to	characterize	the	expected	spread	of	precipitation	metrics.		

Figure	 3.1	 shows	mean,	maximum	 and	minimum	precipitation	 from	ASHRAE	 (blue	

line),	GHCN	(red),	averaged	UWPD	(black	line),	and	a	range	of	UWPD	realizations	(boxplot).	

A	 boxplot	 is	 a	 standardized	 way	 of	 displaying	 the	 distribution	 of	 data.	 Two	 whiskers	

represent	 the	 maximum	 and	 minimum	 values,	 and	 the	 first	 quartile	 (Q1)	 and	 the	 third	

quartile	(Q3)	are	the	25th	and	75th	percentiles,	respectively.	The	red	bar	is	the	median,	and	

the	red	points	are	drawn	as	outliers	that	are	larger	that	Q3	+	1.5*(Q3-Q1)	or	smaller	than	Q1	

-	1.5*(Q3-Q1).	The	default	value	1.5	represents	the	length	of	the	maximum	whisker,	and	it	

corresponds	 to	 approximately	 +/-	 2.7	 sigma	 and	 99.3	 coverage	 if	 the	 data	 are	 normally	

distributed.		

Monthly	mean	precipitation	from	three	sources	are	consistent	from	January	to	March	

as	well	as	from	August	to	December.	There	are	some	biases	that	occurred	from	April	to	July,	

but	all	differences	are	within	the	range	of	UWPD	realizations.	GHCN	and	averaged	UWPD	are	

largely	consistent	with	each	other,	while	the	value	from	ASHRAE	shows	a	sudden	drop	in	

July.		

Maximum	and	minimum	precipitation	are,	by	nature,	more	variable	and	demonstrate	

less	consistency	among	these	three	sources.	The	maximum	precipitation	from	three	sources	
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is	consistent	from	January	to	April.	However,	precipitation	from	three	sources	becomes	very	

different	 after	 April.	 GHCN	 and	UWPD	 both	 show	 an	 inverted	 “U”	 shape.	 GHCN	monthly	

maximum	precipitation	peaks	in	June,	and	then	starts	falling	in	the	following	months	with	a	

second	peak	in	November.	UWPD	precipitation	peaks	in	July/August,	and	there	is	no	second	

peak.	ASHRAE’s	precipitation,	however,	is	more	variable.	It	shows	a	sudden	drop	in	April	and	

peaks	in	June,	followed	by	a	sharp	drop	in	July.	Overall,	GHCN	and	UWPD	agree	with	each	

other	more	than	ASHRAE	in	terms	of	maximum	precipitation.	Still,	both	ASHRAE	and	GHCN	

largely	fall	within	the	expected	spread	from	the	UWPD	realizations.		

The	 situation	 is	 somewhat	 different	 for	 minimum	 precipitation.	 Minimum	

precipitation	from	GHCN	and	ASHRAE	show	a	similar	“M”	shape.	They	both	have	two	peaks,	

in	April	and	July	respectively,	and	a	large	drop	between	the	two	peaks,	but	the	value	from	

ASHRAE	falls	 faster	 than	 from	GHCN	after	August.	The	amount	of	minimum	precipitation	

from	September	to	November	is	lower	than	10	mm	from	ASHRAE’s	calculation,	but	higher	

than	10	mm	from	GHCN.	UWPD	shows	a	smoother	inverted	“U”	shape,	with	a	peak	in	June.	

In	summary,	ASHRAE	and	GHCN	agree	more	with	each	other,	though	again,	estimates	fall	

within	the	spread	of	expected	values	from	the	UWPD	realizations.		
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Overall,	Figure	3.1	shows	that	monthly	precipitation	from	ASHRAE	is	fluctuating	with	

a	drop	in	July	for	mean	value,	drops	in	May	and	July	for	maximum	value,	and	a	drop	in	June	

for	minimum	value.	Two	drops	in	ASHRAE	monthly	maximum	precipitation,	especially	the	

one	in	July,	may	be	the	main	reason	for	the	inconsistency	between	mean	precipitation	from	

ASHRAE	 and	 the	 other	 two	 sources.	 Further	 study	 is	 needed	 to	 figure	 out	why	ASHRAE	

presents	a	drier	July.		

	

	 	
Figure	3.1	Comparison	of	monthly	precipitation	design	conditions	by	ASHRAE	(blue),	GHCN	
(red),	and	UWPD	(black)	for	Madison,	WI.	Lines	are	the	mean	values	and	box	plots	refer	to	
the	UWPD	realizations.	
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3.2	Producing	Future	Climate	Design	Conditions		

After	 we	 reproduced	 the	 ASHRAE’s	 calculations	 (more	 than	 90%	 climate	 design	

variables	are	reproduced),	we	calculated	ASHRAE-equivalent	temperature	and	precipitation	

metrics	 for	 Madison,	 Wisconsin,	 for	 the	 mid-century	 (2041-2060)	 and	 the	 late-century	

(2081-2100)	using	the	rescaled	hourly	data.	Four	complete	charts	are	provided	in	Appendix	

B.	

3.2.1	Sensitivity	of	temperature	metrics		

A	 simple	 sensitivity	 analysis	 was	 done	 for	 climate	 design	 variables	 under	 a	 high	

emission	 scenario	 (RCP	 8.5).	 Table	 3.3	 shows	 the	 change	 in	 variables	 from	 the	 present	

(1986-2010)	 to	 the	 late	 century	 (2081-2100)	 and	 how	much	 they	would	 change	with	 a	

changing	climate.	Percentage	change	is	used	for	degree	days	and	hours,	and	absolute	change	

is	used	for	the	rest	of	the	variables	because	the	order	of	value	in	the	degree	days	and	hours	

metric	 is	much	 larger	 than	 the	order	of	value	 in	other	metrics.	Using	different	 standards	

might	not	give	details	for	the	change	of	variables,	but	we	can	still	see	a	general	sensitivity	of	

metrics.		

Although	 all	metrics	 depend	 on	 temperature,	 different	metrics	 exhibit	 different	 levels	 of	

sensitivity	to	global	warming.	Among	the	metrics,	heating	and	cooling	degree	days	and	hours	

show	a	higher	 sensitivity	which	 varies	by	month.	A	higher	 sensitivity	 can	be	 seen	 in	 the	

spring	(March	to	May)	and	fall	(September	to	November),	highlighted	by	darker	green	or	

orange	color.	Degree	days	and	hours	defined	as	the	number	of	hours	that	the	temperature	

exceeds	 a	 base	 threshold.	 It	 quantifies	 the	 demand	 for	 energy	 needed	 to	 heat	 or	 cool	
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buildings.	Due	to	global	warming,	the	need	for	cooling	will	increase	and	the	need	for	heating	

will	decrease.	This	change	can	be	seen	in	Table	3.3,	with	the	positive	percentage	change	for	

CDD	and	hour,	and	a	negative	percentage	change	for	HDD.	

	

	
	
	
	

	

	
	
	

	
	

	
Table	3.3	Sensitivity	analysis	for	design	variables	in	the	late	century	(2081-2100),	under	
high	emission	(RCP	8.5)	scenario.	
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Apart	 from	 the	 seasonal	 variability,	 the	 sensitivity	 of	 degree	 days	 and	 hours	 also	

change	 with	 different	 base/threshold	 temperature.	 A	 higher	 sensitivity	 to	 temperature	

increase	can	be	seen	for	a	higher	threshold	temperature.		We	can	see	this	in	Table	3.3,	where	

the	orange	for	the	row	of	CDD	and	CDH	with	base	temperature	18.3°C	and	26.7°C	is	darker	

than	the	row	of	CDD	and	CDH	with	base	temperature	10°C	and	23.3°C,	respectively.	Table	

3.4	shows	a	clearer	comparison	of	CDD	and	CDH	between	the	present	(blue),	the	mid	(black),	

and	 the	 late	 (red)	 century,	 under	high	 emission	 (RCP	8.5).	 From	 the	present	 to	 the	 late-

century,	 CDD	 will	 double	 when	 the	 base	 temperature	 is	 10°C	 and	 triple	 when	 the	 base	

temperature	is	18.3°C.	The	change	is	more	significant	for	CDH.	CDH	with	a	base	temperature	

23.3°C	increases	by	a	factor	of	5.	While	when	the	base	temperature	is	increased	to	26.7°C,	

CDD	in	the	late	century	is	increased	eightfold	from	the	present	value.		

	

	

Table	 3.4.	 Comparison	 of	 cooling	degree	 days	 (CDD)	and	 cooling	degree	hours	 (CDH)	 for	
present	(blue),	2041-2060	(black)	and	2081-2100	(red)	century.	
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3.2.2	Trend	of	Cooling	Degree	Hours	by	Decades	

To	better	understand	how	much	more	time	in	the	future	building	will	need	cooling	and	

how	a	change	in	GHG	emissions	impact	the	time	needed	for	cooling,	we	examined	the	trend	

of	annual	CDH	by	decades	under	moderate	(RCP	4.5)	and	high	(RCP	8.5)	emission	scenarios.	

Estimates	are	calculated	for	each	of	the	22	and	24	models	(see	Table	2.2)	contributing	to	the	

UWPD	RCP	4.5	and	RCP	8.5	archives	and	shown	as	box	plots	in	Figure	3.2.	The	left	figure	is	

under	RCP	 4.5	 scenario	 and	 the	 right	 one	 is	 under	RCP	 8.5	 scenario.	 The	 red	 line	 is	 the	

current	value	in	Madison,	WI	as	claimed	by	ASHRAE,	and	the	pink	dashed	line	and	the	blue	

dashed	line	represent	the	current	CDH	value	in	St.Louis,	Missouri	and	Birmingham,	Alabama,	

respectively.		

	

Figure	3.2	Trend	of	cooling	degree	hours	(CDH)	with	a	base	temperature	of	23.3	°C,	under	
moderate	emission	PRC	4.5	(left)	and	high	emission	RCP	8.5	(right)	for	Madison	WI.	

	

Under	both	scenarios,	the	CDH	increased	and	its	range	spreads	out	with	time,	meaning	

a	higher	uncertainty.	Both	the	increase	and	the	uncertainty	are	more	noticeable	with	higher	
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emissions.	The	initial	values	of	CDH	for	2020	are	about	the	same	under	the	two	scenarios,	

but	the	value	under	RCP	8.5	increases	significantly	faster	than	the	value	under	RCP	4.5,	and	

in	2090,	the	former	become	as	twice	higher	as	the	latter.	This	indicates	that	GHG	emissions	

will	make	a	substantial	difference	to	CDH	and,	therefore,	to	our	demand	for	indoor	energy	

used	for	cooling	buildings.	By	comparing	the	trend	of	CDH	in	Madison	with	current	CDH	in	

St.	Louis,	MO	and	Birmingham,	AL,	we	found	that	under	moderate	emissions,	Madison	will	

be	similar	to	St.	Louis,	Missouri,	by	2090,	and	under	high	emissions,	Madison	will	resemble	

Birmingham,	Alabama,	by	2070.		
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Chapter	4	

Conclusions	

This	work	has	used	the	ASHRAE	climate	design	chart	2013	edition	as	a	starting	point	

and	has	estimated	and	evaluated	how	building	climate	design	conditions	are	expected	 to	

change	with	global	warming.	

As	discussed	in	Section.	3.1,	by	using	exactly	the	same	dataset,	ISD	hourly	temperature	

and	 GHCN	 adjusted	 monthly	 precipitation,	 we	 have	 successfully	 reproduced	 most	 of	

ASHRAE’s	 temperature	and	precipitation	metrics	 for	 the	 same	period	of	1986-2010	over	

Madison.	Ninety	percent	of	our	calculations	are	nicely	 consistent	with	ASHRAE’s	with	no	

difference,	or	difference	smaller	than	0.5°C	and	1%	for	temperature	metrics	and	smaller	than	

20%	for	precipitation	metrics.	

Some	discrepancies	were	seen	 in	12	temperature	related	variables,	with	 the	 largest	

difference	of	1.3°C	in	99.6%	mean	coincident	dry-bulb	temperature	and	the	minimum	value	

of	 50-year	 return	 period	 value	 of	 extreme	 dry-bulb	 temperature.	 Other	 differences	 are	

smaller	than	1°C	or	1%.	In	precipitation	metrics,	significant	differences	occurred	in	extreme	

metrics,	especially	for	the	maximum	precipitation	in	May	and	November	where	the	amount	

of	rainfall	by	GHCN	(275	mm	and	190	mm)	is	twice	as	much	as	ASHRAE’s	value	(159mm	and	

100mm).	These	differences	may	be	due	to	the	methods	to	address	the	missing	year	(1996)	

of	observed	data	over	Madison.	
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Using	the	same	ASHRAE	calculations,	four	equivalent	future	design	tables	under	RCP	

4.5	and	RCP	8.5	for	the	mid-	and	late-	century	have	been	produced.	These	tables	can	provide	

good	estimates	of	the	future	climate	impacts	on	building	design	metrics	over	Madison.	Our	

calculations	for	these	future	metrics	were	based	on	hourly	future	data	rescaled	from	UWPD	

projection.	The	UWPD	dataset	was	downscaled	from	more	than	twenty	GCMs,	which	avoid	

bias	from	one	single	climate	model.	This	dataset	also	preserves	local	realistic	variance	by	

giving	 PDFs	 of	 local-scale	 variables	 instead	 of	 the	 precise	 values,	 which	 are	 keys	 for	

calculating	the	extreme	metrics	in	ASHRAE	table.		

To	study	the	impacts	of	climate	change	on	building	design	conditions,	we	analyzed	the	

sensitivity	of	multiple	meteorological	metrics	and	found	the	metric	of	cooling	degree	days	

(CDDs)	and	hours	(CDHs)	to	be	most	sensitive	to	global	warming.	Our	findings	also	show	the	

sensitivity	 of	 degree	 days	 and	 hours	 demonstrate	 seasonal	 variability,	 with	 a	 higher	

sensitivity	in	the	spring	and	fall.	The	sensitivity	also	varies	when	the	threshold	temperature	

changes.	A	higher	sensitivity	can	be	seen	for	a	higher	threshold	temperature.		

Furthermore,	we	examined	CDHs	with	a	base	temperature	of	23.3°C	over	decades.	The	

result	 shows	 that	under	both	high	and	moderate	emission	scenarios,	CDHs	 increase	with	

time.	The	increase	is	much	faster	under	high	emissions,	with	the	value	of	CDH	in	2090	under	

high	 emission	 is	 twice	 as	 high	 as	 the	 value	 expected	 under	 moderate	 emission.	 When	

comparing	 the	 CDH	 in	Madison	with	 CDH	 in	 select	 southern	 cities,	we	 found	 that	 under	

moderate	emissions,	Madison	will	be	similar	to	St.	Louis,	MO,	by	2090;	under	high	emissions,	

CDHs	 in	Madison	will	 double	 by	 2050	 and	 fivefold	 by	 2090,	 and	Madison	will	 resemble	

Birmingham,	AL,	by	2070.	
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Based	on	these	results,	we	answered	research	questions	in	Section.	1.4:	

• What	are	the	meteorological	based	metrics	most	sensitive	to	climate	change?	

Degree	days	and	hours	are	more	sensitive	than	other	metrics.		

• How	do	cooling	degree	days	change	with	time	throughout	the	21th	century?		

In	Madison,	cooling	degree	days	increase	through	the	21th	century	under	both	RCP	

4.5	and	RCP	8.5	scenario.	Under	RCP	8.5,	cooling	degree	days	will	be	1.4	and	2	times	

greater	 than	 now	 by	 2050,	 and	 2	 and	 3.3	 times	 by	 2090,	 when	 the	 threshold	

temperature	is	10°C	and	18.3°C,	respectively.			

• How	 the	 trend	 of	 cooling	 degree	 days	 change	 under	 different	 emission	

scenarios?	

Although	the	value	of	cooling	degree	days	increases	under	both	scenarios,	it	increases	

much	faster	when	emission	is	high.	In	Madison,	cooling	degree	days	under	RCP	4.5	

and	RCP	8.5	are	almost	the	same	in	2020,	but	in2090, the	value	under	RCP	8.5	is	

twice	as	greater	than	the	value	under	RCP	4.5.			

In	 conclusion,	 our	 study	 considers	 the	 effects	 of	 CDDs,	 HDDs	 on	 demand	 for	 using	

cooling	and	heating	systems,	and	indoor	energy	usage,	and	shows	general	consistency	with	

other	studies	that	have	been	done	on	CDD/HDD	metrics	and	HVAC&R	usage	(McFarland	et	

al.,	2015;	Hadley	et	al.,	2006;	Rosenthal	et	al.,	1995;	Huang	&	Gurney,	2016).	In	particular,	

McFarland	et	al.,	2015	has	shown	the	U.S.	national	CDDs	are	expected	to	rise	from	32%	to	

42%	by	2050	(McFarland	et	al.,	2015),	and	Huang	&	Gurney,	2016	has	shown	the	change	is	

greater	at	the	state	level	(Huang	&	Gurney,	2016).		Our	study,	taking	Madison	as	an	example,	
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extends	to	city	level,	and	the	results	show	even	larger	changes	in	CDDs	metric,	doubling	by	

2050	under	RCP	8.5.	This	highlights	the	importance	of	taking	a	local	approach	to	understand	

changes	of	building	design	conditions.	The	updated	design	conditions	in	this	study	can	be	

used	 for	new	building	construction	 in	Madison,	and	 the	methods	of	data	rescaling	 in	 this	

study	 provides	 a	 novel	 perspective	 of	 how	 to	 include	 information	 of	 climate	 change	 in	

building	constructions.			
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Appendix	A:		

A.1	2013	edition	ASHRAE	Climate	Design	Conditions	for	Madison,	WI	(ASHRAE,	2020)	
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A.2	Variables	typically	calculated	by	ASHRAE	(ASHRAE,	2013a)	

Annual	Design	Conditions	

Annual	Heating	and	Humidification	Design	Conditions.		

• Coldest	month	(i.e.,	month	with	lowest	average	dry-bulb	temperature;	1	=	January,	
12	=	December).	

• Dry-bulb	temperature	corresponding	to	99.6	and	99.0%	annual	cumulative	
frequency	of	occurrence	(cold	conditions),	°C.	

• Dew-point	temperature	corresponding	to	99.6	and	99.0%	annual	cumulative	
frequency	of	occurrence,	°C;	corresponding	humidity	ratio,	calculated	at	standard	
atmospheric	pressure	at	elevation	of	station,	grams	of	moisture	per	kg	of	dry	air;	
mean	coincident	dry	bulb	temperature,	°C.	

• Wind	speed	corresponding	to	0.4	and	1.0%	cumulative	frequency	of	occurrence	for	
coldest	month,	m/s;	mean	coincident	dry-bulb	temperature,	°C.		

• Mean	wind	speed	coincident	with	99.6%	dry-bulb	temperature,	m/s;	corresponding	
most	frequent	wind	direction,	degrees	from	north	(east	=	90°).		

Annual	Cooling,	Dehumidification,	and	Enthalpy	Design	Conditions.		

• Hottest	month	(i.e.,	month	with	highest	average	dry-bulb	temperature;	1	=	January,	
12	=	December).	

• Daily	temperature	range	for	hottest	month,	°C	[defined	as	mean	of	the	difference	
between	daily	maximum	and	daily	minimum	dry	bulb	temperatures	for	hottest	
month].		

• Dry-bulb	temperature	corresponding	to	0.4,	1.0,	and	2.0%	annual	cumulative	
frequency	of	occurrence	(warm	conditions),	В°C;	mean	coincident	wet-bulb	
temperature,	°C.		

• Wet-bulb	temperature	corresponding	to	0.4,	1.0,	and	2.0%	annual	cumulative	
frequency	of	occurrence,	°C;	mean	coincident	dry	bulb	temperature,	°C.		

• Mean	wind	speed	coincident	with	0.4%	dry-bulb	temperature,	m/s;	corresponding	
most	frequent	wind	direction,	degrees	true	from	north	(east	=	90°).		

• Dew-point	temperature	corresponding	to	0.4,	1.0,	and	2.0%	annual	cumulative	
frequency	of	occurrence,	°C;	corresponding	humidity	ratio,	calculated	at	the	
standard	atmospheric	pressure	at	elevation	of	station,	grams	of	moisture	per	kg	of	
dry	air;	mean	coincident	dry-bulb	temperature,	°C.		

• Enthalpy	corresponding	to	0.4,	1.0,	and	2.0%	annual	cumulative	frequency	of	
occurrence,	kJ/kg;	mean	coincident	dry-bulb	temperature,	°C.		
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• Number	of	hours	between	8	AM	and	4	PM	(inclusive)	with	dry-bulb	temperature	
between	12.8	and	20.6°C.		

Extreme	Annual	Design	Conditions.		

• Wind	speed	corresponding	to	1.0,	2.5,	and	5.0%	annual	cumulative	frequency	of	
occurrence,	m/s.	

• Extreme	maximum	wet-bulb	temperature,	°C.		
• Mean	and	standard	deviation	of	extreme	annual	minimum	and	maximum	dry-bulb	

temperature,	°C.		
• 5-,	10-,	20-,	and	50-year	return	period	values	for	minimum	and	maximum	extreme	

dry-bulb	temperature,	°C.		

Monthly	Design	Conditions	

Temperatures,	Degree-Days,	and	Degree-Hours.		

• Average	temperature,	°C.	This	parameter	is	a	prime	indicator	of	climate	and	is	also	
useful	to	calculate	heating	and	cooling	degree	days	to	any	base.		

• Standard	deviation	of	average	daily	temperature,	°C.	This	parameter	is	useful	to	
calculate	heating	and	cooling	degree-days	to	any	base.	Its	use	is	explained	in	the	
section	on	Estimation	of	Degree-Days.		

• Heating	and	cooling	degree-days	(bases	10	and	18.3°C).	These	parameters	are	
useful	in	energy	estimating	methods.	They	are	also	used	to	classify	locations	into	
climate	zones	in	ASHRAE	Standard	169.		

• Cooling	degree-hours	(bases	23.3	and	26.7°C).	These	are	used	in	various	standards,	
such	as	Standard	90.2-2004.		

Monthly	Design	Dry-Bulb,	Wet-Bulb,	and	Mean	Coincident	Temperatures.		

• Dry-bulb	temperature	corresponding	to	0.4,	2.0,	5.0,	and	10.0%	cumulative	
frequency	of	occurrence	for	indicated	month,	°C;	mean	coincident	wet-bulb	
temperature,	°C.		

• Wet-bulb	temperature	corresponding	to	0.4,	2.0,	5.0,	and	10.0%	cumulative	
frequency	of	occurrence	for	indicated	month,	°C;	mean	coincident	dry-bulb	
temperature,	°C.		

Mean	Daily	Temperature	Range.		

• Mean	daily	temperature	range	for	month	indicated,	В°C	(defined	as	mean	of	
difference	between	daily	maximum	and	minimum	dry	bulb	temperatures).	
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• Mean	daily	dry-	and	wet-bulb	temperature	ranges	coincident	with	the	5%	monthly	
design	dry-bulb	temperature.	This	is	the	difference	between	daily	maximum	and	
minimum	dry-	or	wet-bulb	temperatures,	respectively,	averaged	over	all	days	where	
the	maximum	daily	dry-bulb	temperature	exceeds	the	5%	monthly	design	dry-bulb	
temperature.	

• Mean	daily	dry-	and	wet-bulb	temperature	ranges	coincident	with	the	5%	monthly	
design	wet-bulb	temperature.	This	is	the	difference	between	daily	maximum	and	
minimum	dry-	or	wet-bulb	temperatures,	respectively,	averaged	over	all	days	where	
the	maximum	daily	wet-bulb	temperature	exceeds	the	5%	monthly	design	wet-bulb	
temperature.		
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A.3	Data	quality	check	and	screen	criteria	(ASHRAE,	2013a)	

In	according	to	ASHRAE’s	work,	the	minimum	number	of	years	of	data	required	to	process	a	
station	was	 set	 to	8	years.	This	was	derived	 from	a	previous	 study	which	 showed	 that	 a	
minimum	of	8	years	of	data	would	provide	reliable	design	calculation	for	most	stations.	In	
some	cases,	several	stations	may	be	combined	into	one	single	station	processing.	In	terms	of	
missing	data,	gaps	up	to	6h	were	filled	by	linear	interpolation.	When	data	were	not	recorded	
at	the	beginning	of	the	hour,	missing	data	at	exact	hour	were	replaced	by	data	up	to	0.5h	
before	or	after.		

Annual	 cumulative	 frequency	 distribution	 was	 constructed	 from	 relative	 frequency	
distribution	 complied	 for	 each	 month,	 so	 after	 missing	 data	 filled	 by	 interpolation,	 the	
individual	month	need	to	meet	following	screening	criteria	for	completeness	and	unbiased	
distribution:	1)	The	number	of	dry-bulb	temp	values	for	the	month	had	to	be	at	least	85%	of	
total	hours	for	the	month.	For	example:	a	month	with	31	days	has	31*24=744	hours	in	total,	
will	be	included	in	calculation	if	the	number	of	dry-bulb	temp	values	for	this	month	exceed	
744*85%=633	hours.	2)	The	difference	between	the	number	of	day	and	nighttime	dry-bulb	
temp	had	to	be	less	than	60.	In	addition,	a	station’s	dry-bulb	temp	design	conditions	were	
calculated	only	if	there	were	data	from	at	least	8	months	that	met	the	quality	control	and	
screening	criteria.		

Dew	point,	wet-bulb	and	enthalpy	were	calculated	for	a	given	month	only	if	the	number	of	
these	values	were	greater	than	85%	of	the	minimum	number	of	dry-bulb	temp	value.	For	
example,	a	month	will	be	included	in	calculation	of	dew	point	only	if	dew	point	was	present	
for	at	least	85%	of	633	hours,	which	was	538	hours.		

Annual	dry-bulb	extremes	were	calculated	only	for	years	that	were	85%	complete.	At	least	
8	annual	extremes	are	required	 to	calculate	 the	mean	and	standard	deviation	of	extreme	
values.	Daily	max	and	min	dry-bulb	temp	were	calculated	only	for	complete	days,	so	were	
daily	ranges	and	mean	coincident	temp	ranges	
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A.4	 Mathematical	 Equations	 for	 standard	 meteorological	 variables	

calculated	by	ASHRAE	(ASHRAE,	2013a)	

Dry	bulb	temperature:	t	(°C),	Dew	point	temperature:	td	(°C)	and	Elevation:	Z	(ft)	are	given	in	the	
ISD	data.	
Unit	conversion:		
Temperature	relating	variables	in	the	design	table	are	all	presented	by	unit	[°C],	but	unit	of	[°F]	and	
[°R]	are	involved	in	the	calculation	of		p!,		p!.∗	and	t*.				[°R]	=	[°F]	+	459.67;		[°F]	=	[°C]	*	1.8	+	32		

	
𝐩	

barometric	pressure	(psia).	

	
𝐩 = 	14.696(1 − 6.8754 × 10#6𝑍)5.&553	

	
	
	
	
	

𝐩𝐰	
partial	pressure	of	water	vapor.	
(psia)			
td	is	in	[°R].	
temp	is	in	[°F]	
		

	
For	temp<32:	

ln	(p!)	=	c1/td	+	c2	+	c3*td	+	c4*td^2	+	c5*td^3	+	
c6*td^4	+	c7*log(td);	

For	32<temp:	
ln	(p!)	=	c8/td	+	c9	+	c10*td	+	c11*td^2	+	c12*td^3	+	

c13*log(td);	
c1	=	-1.0214165*104;																																				c2	=	-4.8932428*100;		
c3	=	-5.3765794*10-3;																																c4	=	1.9202377*10-7;		
c5	=	3.5575832*10-10;																															c6	=	-9.0344688*10-14;	
c7	=	4.1635019*100;																																		c8	=	-1.0440397*104;		
c9	=	-1.1294650*101;																																				c10	=	-2.7022355*10-2;		
c11	=	1.2890360*10-5;																															c12	=	-2.4780681*10-9;		
c13	=	6.5459673*100;	
	

	
W	

humidity	 ratio/mixing	 ratio	
(gr0I9.+JK//lbLKM	89K)	

	

W = 0.621945 ∗
p!

p − p!
	

	
h	

enthalpy	(Btu/lb)	

	
h = 0.240 ∗ t +W ∗ (1061 + 0.444 ∗ t)	
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𝐩𝐰𝐬∗	
saturation	pressure		
by	wet	bulb	temperature	(psia).	
t*	is	in	[°R].	
temp	is	in	[°F].	

	
For	temp<32:	

ln	(p!.∗:		)	=	c1/t*	+	c2	+	c3*t*	+	c4*t*^2	+	c5*t*^3	+	
c6*t*^4	+	c7*log(t*);	

	
	

For	32<temp:	
ln	(p!.∗:		)	=	c8/t*	+	c9	+	c10*t*	+	c11*t*^2	+	c12*t*^3	+	

c13*log(t*);	
	

c1-c13	are	the	same	with	pw	calculation.	

Ws*	

humidity	 ratio	 by	 wet	 bulb	
temperature	
(gr0I9.+JK//lbLKM	89K)	

	

Ws∗ = 0.621945 ∗
p!.∗

p − p!.∗
	

	

t*	

wet-bulb	temp	(°F)	
temp	is	in	[°F].	
t*	we	get	here	is	also	in	[°F],	so	
need	 to	 convert	 to	 [°C]	 when	
present	in	chart.		

	
For	temp<32:	
	

W =	
(1220 − 0.04 ∗ t∗)Ws∗ − 0.240 ∗ (temp − t∗)

1220 + 0.444 ∗ temp − 0.48 ∗ t∗ 	

	
For	32<temp:	
	

W =	
(1093 − 0.556 ∗ t∗)Ws∗ − 0.240 ∗ (temp − t∗)

1093 + 0.444 ∗ temp − t∗ 	

	

Hottest/Coldest	Month	
		
Month	with	highest/lowest	dry-bulb	temperature	

Daily	Temperature	
	
Mean	 of	 the	 difference	 between	 daily	 maximum	 and	 daily	
minimum	dry-bulb	temperature	for	hottest	month		

Mean	daily	temp	range	
	
Mean	daily	difference	between	max	and	min.	
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Extreme	conditions	

calculation	

Extreme	annual	wind	speed	
Extreme	Max:	the	highest	value	over	the	entire	period	of	record.	
The	 mean	 /	 Standard	 deviation	 of	 annual	 max	 and	 min:	 Avg(daily	
max/min),	Sd(daily	max/min)	from	hourly	data.	
N-year	return	period	value	of	extreme	DB	(describe	the	probability	of	the	
condition	occurring	at	all	in	any	year):	
	

Tn = M+ I ∗ F ∗ s	
	
Tn:	n	years	return	value	of	extreme	(Max/Min).			
M:	mean	of	annual	extreme	(Max/Min)	
s:	standard	deviation	of	annual	extreme	(Max/Min)	
I=	1	for	Max	and	-1	for	Min	

	
Monthly	average	and	
standard	deviation	of	

daily	average	

	
∑ #$%&'(#$%$)

*
+
$,-

:
	for	each	complete	day	

			
N:	The	number	of	days	in	the	month	

	
	

	
Monthly	Heating	

degree	days	(HDD)/	
Cooling	degree	days	

(CDD)	

	
	

HDD =X(T78./ − T49)
:

9;%

												CDD =X(T49 − T78./)
:

9;%

	

	
T./01=10	or	18.3	

	T# =
max +min

2 				

N:	the	number	of	days	in	the	month)	
	
	
	

	
	

Monthly	Cooling	
degree	hours	(CDH)	

CDH =X(T49 − T78./)
:

9;%

	

	
T./01=23.3	or	26.7	
	T# = Hourly	dry	bulb	temperature	
N:	the	number	of	hours	in	the	month).	
	

		
Annual	HDD/CDD/	

CDH	

	
The	sum	of	monthly	HDD/CDD/CDH	
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Appendix	B:		

Updated	Climate	Design	Conditions	

	

	

*Under	RCP	4.5	scenario,	averaged	form	22	models	presented	in	Table	2.2	
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*Under	RCP	4.5	scenario,	averaged	form	22	models	presented	in	Table	2.2	
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*Under	RCP	8.5	scenario,	averaged	form	22	models	presented	in	Table	2.2	
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*Under	RCP	8.5	scenario,	averaged	form	22	models	presented	in	Table	2.2	
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