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Abstract  

Exchanges of carbon, water, and energy between the terrestrial biosphere and atmosphere 

are major drivers of the Earth’s climate system, yet interactions between them remain the second-

largest uncertainty in climate projections (Fisher et al., 2017). A key aspect of reducing this 

uncertainty lies in better parameterizing and calibrating terrestrial ecosystem models using data 

assimilation (DA) methods. In the atmospheric sciences, DA is often synonymous with addressing 

initial condition and forcing uncertainty in weather forecast models. However, for the land surface, 

and for its carbon, water, and energy exchange, uncertainty predominantly comes from the 

representation of biological processes and most importantly, the parameters that describe those 

processes (Dietze, 2017). Until recently, the application of Bayesian DA to complex ecosystem 

models has been computationally prohibitive, and thus was not a viable option for model 

calibration. With the recent application of statistical emulation techniques to traditional DA 

methodology, many of these barriers have been overcome (Fer et al., 2018). 

In this study, the Ecosystem Demography model version 2.2 was used for the testing and 

application of an emulator approach to Bayesian parameter data assimilation, with model runs 

occurring at a study site in Northern Wisconsin’s Chequamegon-Nicolet National Forest.  

This study seeks to answer two primary questions: 

1. Can model parameter data assimilation using a Bayesian emulator approach reduce 

individual parameter uncertainty? 

2. Can parameter data assimilation using an emulator approach reduce overall model 

predictive uncertainty related to carbon cycle processes in a structurally complex 

ecosystem model?  
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Eight plant physiological and soil biogeochemical parameters contributing to the largest 

proportion of net ecosystem exchange (NEE) model predictive uncertainty were identified through 

sensitivity analysis and variance decomposition. Individual parameter uncertainty was reduced 

following PDA for the majority of targeted parameters, with remaining uncertainty primarily 

shifting to two parameters controlling respiration processes (growth respiration and respiration 

temperature increase). Overall model predictive uncertainty increased by 13.74% as a result of 

PDA, although distinct seasonality was observed. The confidence interval spread of model NEE 

predictions was successfully constrained during the growing season, but model performance was 

poor during winter and fall, due primarily to dramatically enhanced respiration predictions.  
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1. Introduction and Background 

1.1 Models and the global carbon cycle 

Although they are far from perfect, models are one of the most common tools used by 

scientists to understand and predict changes in the earth system over time and space (Dietze et al., 

2014). Earth system models simulate interactions among component land, atmosphere, ocean, and 

sea ice models to represent climate as the outcome of interacting physical, chemical, and biological 

processes (Bonan, 2019). Terrestrial models address processes happening at the earth’s surface, in 

vegetated ecosystems and the interfaces between them. Over time terrestrial models have expanded 

in complexity as the questions we sought to answer became more comprehensive and 

computational ability improved.  

 

Figure 1: Evolution of land surface models over time, demonstrating the increasing complexity of 

biological process representation (Fisher et al., 2020). 
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Originating in the 1960’s as simplified linear differential equations to represent material 

fluxes between ‘compartments’, by the late 1980’s models were capable of representing plant 

canopies and soil hydrological properties, and by the early 2000’s terrestrial models were able to 

simulate dynamic vegetation and capture complex carbon and water cycle interactions (Bonan, 

2019). Results from some of the first fully coupled land surface model runs solidified the 

importance of the terrestrial carbon cycle in relation to global climate change. Model results 

showed that not only could the plant biophysical response to elevated levels of atmospheric CO2 

be significant enough to influence global climate, but that feedbacks between climate and the 

terrestrial carbon cycle could lead to an acceleration of global climate change significantly beyond 

what had originally been predicted by the scientific community (Cox et al., 2000; Sitch et al., 2003; 

Friedlingstein et al., 2013; Fisher et al., 2020).  

A great deal of uncertainty was associated with these early predictions, a significant portion 

of which was due to terrestrial carbon dynamics and whether landscapes were classified as carbon 

sinks or carbon sources (Fisher et al., 2020). Tightly coupled to the water cycle, terrestrial 

ecosystems can act as either carbon sinks (through photosynthesis and primary production) or 

carbon sources (soil and plant respiration, organic matter decomposition, plant mortality and 

combustion), and provide climate feedbacks through latent heat fluxes, albedo, and water cycling 

(Fisher et al., 2017), although the magnitude of this forcing is not well constrained (Bonan, 2008). 

Globally, the terrestrial biosphere serves as a net carbon sink, and has taken up approximately 31% 

of the cumulative carbon emitted due to anthropogenic activities such as fossil fuel combustion 

and land-use change over the period of 1870-2017 (Le Qu�́r�́ et al., 2018). The majority of this 

uptake occurs in forests, which are the largest terrestrial carbon sink on earth (Canadell and 

Schulze, 2014) and sequester extensive amounts of atmospheric carbon in both biomass and soils.  
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Figure 2: Perturbation of the global carbon cycle caused by anthropogenic activities, represented 

as fluxes and stocks. Values shown are averaged over the period from 2008-2017, units are GtC/yr 

(Le Qu�́r�́ et al., 2018). 
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Figure 3: Anthropogenic perturbation carbon flows displayed as cumulative changes during 

1870-2017 (left) and mean fluxes per year from 2008-2017 (right), both in GtC (Le Qu�́r�́ et al., 

2018). 

Forests cover approximately 30% of the land surface (Bonan, 2008), existing in a wide 

range of climatic zones and with a high degree of structural and functional diversity. In addition 

to their influence on climate, forests provide essential ecological, economic, social, and aesthetic 

services to both humans and natural systems (Bonan, 2008). In pursuit of  these ecosystem services, 

humans have used forest management techniques to alter the natural forest state, such as through 

supporting accelerated tree growth for logging purposes. Human management of terrestrial 

ecosystems drastically impacts the already complex land-atmosphere relationships, altering the 

magnitude and seasonality of carbon source and sink dynamics and further driving interannual 



5 

 

 

variability in atmospheric greenhouse gas concentrations (Desai et al., 2007). Predicting how forest 

carbon dynamics will shift in response to climate change is a challenge made more complex by 

the high degree of variability across environmental gradients and the broad range of spatial and 

temporal scales at which ecosystem processes operate. The ability to simulate carbon cycle 

dynamics in terrestrial systems through the use of models is one solution to this problem, and has 

been a major development in understanding the influence of forests on large-scale climate. Model 

simulations are especially useful tools to examine the carbon cycle, as many aspects of the 

terrestrial carbon cycle are difficult to measure directly (LeBauer et al., 2013; Bastin et al., 2019).  

There are three general approaches to quantifying carbon dynamics in terrestrial systems: 

(1) direct measurement of carbon fluxes, (2) measuring changes in carbon stocks over time, and 

(3) the use of models to simulate the key processes involved in moving carbon through an 

ecosystem (Williams et al., 2005). Carbon fluxes can be directly measured using eddy covariance 

flux towers and leaf-level gas exchange measurements (Baldocchi, 2003). These tools can provide 

local-scale insight into fast carbon cycle processes and forest-atmosphere interactions at a nearly 

continuous timescale, but are not without limitations. Flux data frequently have gaps in 

measurement, night-time observations are often unreliable due to insufficient air mixing, the 

spatial scale of measurements are continuously changing with shifting wind speed and direction, 

and complex terrain can violate the basic assumptions of the eddy covariance approach (Williams 

et al., 2005). Carbon stocks can be determined by measuring the mass of carbon stored in various 

pools and calculating changes in stock size over time. Carbon pools include carbon stored in living 

biomass (plant material such as leaves, stems, and roots), litter, and soil. The soil carbon pool is 

often further partitioned based on biochemical properties and turnover times (Raupach et al., 

2005). However, carbon stock measurement is labor intensive, spatially sparse and discontinuous, 
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and belowground pools are difficult to systematically measure in a reliable way (Williams et al., 

2005). The third approach, modeling, integrates data from the previous two approaches to simulate 

carbon fluxes and pool storage based on established relationships and foundational laws of physics 

to predict changes in carbon dynamics over time or in response to perturbation.  

1.2 Model calibration and data assimilation  

Due to the large global variation in plant physiology and soil biogeochemistry, coupled 

with the strong dependence of many ecosystem models on localized ecosystem interactions, 

models must be calibrated at a given geographic location prior to running in order to produce 

representative output (Longo et al., 2019). Calibration is the process of choosing parameter or state 

variable values to optimize the fit of the model to test data from the location of interest (Van Oijen 

et al., 2017). The process of calibration can incorporate data from a variety of sources, including 

eddy covariance flux towers, ground collected vegetation and soils data, and plant physiology and 

soil biogeochemistry parameter information from existing literature.  

The values that flexible parameters within a model are set to can have a substantial impact 

on model predictions. Models are more or less sensitive to different parameters, such that not all 

parameters carry equal weight in causing variance or uncertainty in model predictions (Van Oijen 

et al., 2017). Influential parameters also vary depending on plant functional types (PFT) present 

or the chosen model run duration. For example, leaf width, a parameter that controls leaf boundary 

layer conductance and thus affects carbon and moisture fluxes and the leaf-level energy budget, 

would likely be a low impact parameter for a deciduous PFT during the winter when leaves have 

been shed, but might become an influential parameter come spring when leaves emerge. 

Traditionally parameters have been represented with single point estimates, which are then 

subjectively ‘tuned’ to best match observations. However, the use of single point estimates 
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effectively treats each flexible parameter as certain instead of allowing it to fluctuate within a 

reasonable range based on what is known about the parameter from observations (LeBauer et al., 

2013), and the subjectivity of the tuning process introduces additional unquantifiable uncertainty. 

A Bayesian DA approach to model calibration is an attractive solution to this problem, as it allows 

parameters to vary across a range of values derived from observational data and avoids the 

introduction of bias from manual tuning. Additionally, classical model calibration techniques are 

often plagued with issues of equifinality when applied to models with a large number of flexible 

parameters, as there can be multiple combinations of parameter values that produce results to best 

match the data, regardless of whether the values are biologically feasible, often resulting in the 

model getting the ‘right’ answer for the wrong reasons (Williams et al., 2005). 

Models overcome barriers such as spatial limitations and measurement difficulties 

associated with the other terrestrial carbon quantification methods presented, but predictions can 

carry a great deal of uncertainty depending on how the model represents a system and the 

parameterization techniques used. In order to make model predictions reliable as a tool to both 

understand and respond to the challenge of climate change, uncertainty needs to not only be 

quantified, but steps must be systematically taken to reduce uncertainty in projections. A critical 

aspect of this is understanding the contributions to overall model error from all sources of 

uncertainty (data, parameter, model structure) and focusing efforts on constraining the most 

influential sources. DA is a technique that capitalizes on all three of the carbon quantification 

approaches presented to combine observational data with models and provide improved estimates 

of ecosystem carbon stocks and fluxes, along with rigorously tracked uncertainty estimates (Dietze 

et al., 2013).   
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The overarching goal of data assimilation in an ecosystem modeling framework is to 

improve the ability to predict ecosystem response to a perturbation or scenario of interest. The 

scenario of interest might be net ecosystem exchange under elevated atmospheric CO2 

concentrations, the effect of nitrogen fertilization on above-ground biomass production, or the 

impact of water limitation on evapotranspiration. There are multiple methods of model calibration, 

but utilizing a data assimilation approach is of interest for three key reasons. (1) Data assimilation 

(often called ‘model-data-synthesis’) refers to the combination of information contained within 

both observational data and models through statistical techniques (Raupach, 2005), and can be 

applied to both parameters and state variables. (2) DA allows for the interpolation of data where 

observations might be temporally or spatially sparse, or where observations cannot be directly 

made with current technology, such as for carbon fluxes between pools over large study areas 

(Raupach, 2005). (3) DA facilitates model testing and quality control through the incorporation of 

a statistically rigorous framework of accounting for uncertainty that allows for the quantification 

of how uncertainty around parameters or model predictions shifts in response to changes made to 

the model.  

Although data assimilation can target both parameters and state variables, and traditionally 

has been applied more often to state variables (Dietze et al., 2013), this study utilizes DA to 

constrain parameters for two key reasons. (1) In structurally complex deterministic models with a 

large number of flexible parameters (such as most ecosystem models), uncertainty related to 

parameter values is a primary driver of overall model predictive uncertainty (LeBauer et al., 2013). 

(2) Biological systems tend to have stabilizing feedbacks that make state variables more 

predictable at certain spatial and temporal scales, but in ecological models process equations and 

their associated parameters are statistical approximations of diverse interactions that are not always 
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fully understood (Dietze et al., 2013), and thus their mathematical representation in a model is not 

exact. This is in contrast to physical science applications such as numerical weather prediction 

(where DA techniques originated from) where the equations and parameters governed by physical 

laws are established, but state variables are highly divergent with time (Dietze et al., 2013).  

a. Uncertainty in ecosystem modeling  

The importance of characterizing and reducing uncertainty related to model predictions has 

now been mentioned several times, but what is uncertainty and why is it so important? Simply put, 

uncertainty is the degree to which knowledge about a quantity is incomplete (Van Oijen, 2017). 

Since models are a tool to predict the future state of a system and complete knowledge about the 

future is impossible, uncertainty is a central pillar of any modeling endeavor. Uncertainty is such 

a core element of modeling that many seminal papers in the field of model-data synthesis argue 

that without proper accounting and communication of uncertainty, model results are essentially 

meaningless (Raupach et al., 2005). For reliable model calibration results using data assimilation 

methods, uncertainty from all sources must be tracked at each step in the assimilation process. 

Uncertainty itself can be represented by a probability distribution, which outlines the error values 

that are deemed statistically possible and their probability of occurrence (Van Oijen, 2017). This 

study utilized a Bayesian approach, so the probability distributions used to describe uncertainty 

are conditional probability distributions, and the degree of uncertainty related to a parameter is the 

standard deviation of a model parameter’s posterior probability distribution (The PEcAn Project). 

Predictive variance, or the degree of uncertainty about a prediction made by the model, increases 

with time and a prediction is shown to no longer be useful when the model fails to predict a future 

state any better than the outcome of random chance could. The degree of variance associated with 

a model prediction is described by the following equation from Dietze 2017: 
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Equation 1: equation describing the degree of variance associated with a prediction made about 

the future state of a given system  

Where Yt + 1  is the future state of the system, Yt is the current state of the system, and X is the 

internal dynamics and external driver/covariates that describe the relationship between the two 

system states over time. θ represents the set of parameters required by the function describing the 

effect of Yt and X on Yt + 1 , and is split into two components: �̅ which describes the average value 

of the parameter and α, which represents the random effect, or the deviation from the parameter 

mean experienced at a given point in time or space. ε is the process error, which essentially 

represents the error arising over time from an imperfect representation of processes by the model 

(Van Oijen, 2017). With this equation predictive variance can be described as the sum of variances 

contributed by internal dynamics, external drivers/covariates, parameter, and random effects, as 

well as general process error. The contribution of each factor to overall predictive uncertainty is 

contingent upon the sensitivity of the model to that factor in addition to the degree of uncertainty 

associated with the factor. Unlike in numerical weather prediction, parameters in most ecological 

models are empirically estimated coefficients, not physical constants, which makes them 

significantly more uncertain. This combined with the fact that process-based ecological models 
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are generally parameter rich results in a disproportionately large contribution to overall predictive 

uncertainty from model parameters (LeBauer et al., 2013). In light of this, data assimilation efforts 

to calibrate ED2.2 (a model with a large number of flexible parameters) were targeted towards 

parameters instead of state variables in an attempt to reduce predictive uncertainty to the largest 

degree possible. The following is a more in-depth discussion of each uncertainty source term 

shown in equation 1: (1) internal dynamics, (2) external drivers or covariates, (3) parameters, (4) 

random effects, and (5) general process error.  

(1) Uncertainty related to internal dynamics and initial conditions are encapsulated in the first 

term of equation 1. 
��

��
 describes the stability of the system in question, with a value greater 

than one meaning the system is actively changing and is regarded as unstable. If the system 

is unstable, initial condition uncertainty VAR[Yt] will rapidly increase with time and will 

constitute the majority of predictive uncertainty. This situation is observed in weather 

forecasting, where parameters are physical constants but initial conditions are based on an 

inherently unstable atmosphere and can evolve chaotically over time. Ecosystems have a 

variety of self-stabilizing feedbacks that reduce the contribution of initial conditions to 

overall uncertainty, so this term can be regarded as small when applying equation 1. 

(2) The second term of equation 1 describes model sensitivity to external forcing. The degree 

of sensitivity can vary depending on spatial or temporal scale (ex: system could be highly 

sensitive to some factor ‘B’ when making short term prediction, but the influence of ‘B’ 

could diminish over longer timescales). For models with multiple drivers, interactions 

between drivers can amplify or diminish uncertainty, depending on wether covariance 

between drivers is positive or negative.  
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(3) The third term addresses contributions from parameter sensitivity and uncertainty. 

Parameter uncertainty [Var(�̅)] refers to the uncertainty about the true values of the model 

parameters due to data deficiency and model simplification (McMahon et al., 2009; van 

Oijen, 2017). Parameter sensitivity describes the degree of influence a parameter has on 

model predictions.  

(4) And (5) Capture the remaining unexplained variability, but since these terms quantify error 

in how ecological processes themselves are represented in a model, they cannot be 

constrained through data assimilation. These error terms can come from the equations 

chosen to represent each biological process represented within the model as well as from 

approximations employed to reduce computational expense (Diezte 2017). Equation choice 

is particularly influential because as stated previously, most equations in ecological models 

are empirical calibrations, not physical laws. In light of this, when comparing predictions 

made by a suite of different ecological models a significant portion of the predictive 

variability can be attributed to differences in equations used by the models to represent the 

same biological processes, but the influence of these differences can be especially difficult 

to isolate and quantify (Keenan et al., 2011). 

In addition to the sources of uncertainty captured in equation 1, uncertainty can also be 

associated with the observational data used to drive a model. Uncertainty in observational data can 

result from gaps in the measured data, systematic bias, or general noise due to instrument quality. 

A large portion of the data used to drive ED2.2 in this study comes from eddy covariance towers, 

which have substantial uncertainty associated with measurements due to time-varying flux 

footprints and the influence of heterogeneous surface conditions. Surface heterogeneity often 

contributes significantly to uncertainty because the eddy covariance calculation method itself 
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assumes relatively homogenous surface characteristics (Baldocchi, 2008). Often times the range 

of random measurement uncertainty from flux tower instrumentation can be of a significant 

magnitude in comparison to the measurements themselves (Richardson et al., 2008). Systemic bias 

in flux tower data incorporates error due to insufficient mixing at night, and issues with energy 

balance closure. In an attempt to reduce systemic bias, most nocturnal measurements were 

removed from the Park Falls US-PFa tower dataset used in this study by applying a friction velocity 

(u*) filter of 0.4 ms-1. Flux values observed when values of u* are below 0.4 ms-1 were screened 

out because stable conditions observed during the night complicate NEE calculations due to 

drainage flows and a lack of turbulent transport, and make NEE calculations unreliable (Davis et 

al., 2003). Although process and parameter uncertainties both need to be propagated into model 

predictions, observation error due to imperfect instrumentation isn’t of interest to model, so 

although it should be quantified it doesn’t need to be propagated forward (Fer et al., 2018). 

b. Data assimilation with respect to NEE 

DA is applied to improve model output by optimizing model fit based on a predictive 

variable of interest, which is often net ecosystem exchange (NEE) in studies related to representing 

carbon flux through a system.  

NEE = -NEP = Re – GPP 

Equation 2: expression for net ecosystem exchange (NEE) 

NEE between terrestrial systems and the atmosphere is the balance of the movement of carbon into 

and out of an ecosystem, and is defined as the opposite sign of net ecosystem production (NEP), 

so that as a convention fluxes into an ecosystem (uptake of carbon by the system) are expressed as 

negative (Lovett et, al, 2006). NEP is the difference between the amount of CO2 fixed by plants 
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via photosynthetic uptake (gross primary production, GPP) and the total ecosystem respiration 

(Re). Re is the sum of respiratory efflux of CO2 from both heterotrophic (Rh) and autotrophic (Ra) 

sources (Law et al., 2002). 

c. Data assimilation in structurally simple models 

Brief overviews of two case studies are presented to highlight the success of DA in 

reducing model uncertainty and improving predictions for structurally simple models, and 

demonstrate the potential implications for application to complex ecosystem models. The studies 

presented are (1) the application of a carbon cycle mass balance to predict NEE by Williams et. al 

and (2) the dual assimilation of a ‘green slime’ ecosystem model with respect to both NEE and LE 

to predict gross primary productivity and water cycle dynamics by Moore et. al.  

A 2005 study by Williams et. al used a simple carbon cycle mass balance box model to 

predict NEE in an Oregon ponderosa pine forest. The model had five carbon pools and nine flexible 

parameters. The use of a DA approach to calibrate the model with respect to NEE improved model 

predictions of NEE while reducing uncertainty in predictions. Average NEE estimates over the 

course of three years from the model alone were -251 + 197 g C m-2 compared to -419 + 29 g C 

m-2 predicted by the calibrated model. In generating carbon budgets, data assimilation was also 

shown to produce statistically unbiased estimates of NEE, compared to predictions made using the 

data or model alone. The study noted that a significant portion of the predictive error came from 

the model’s oversimplification of processes (seasonal dynamics in litter turnover and foliar 

phenology, etc.), and that using a more detailed model in place of the simple model would provide 

‘enhanced analysis’ and further reduction in error (Williams et al., 2005). 
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The dual parameterization of NEE and ET approach was tested for a simple model in a 

2008 study by Moore et. al., comparing observational NEE and ET fluxes to those predicted by a 

model parameterized using data assimilation with respect to only NEE as well as both NEE and 

ET. The model used in this study was SIPNET (Simplified PnET model), a simplified ecosystem 

model that consists of three carbon pools (two vegetation pools and one soil pool), and three carbon 

fluxes to simulate carbon exchange between pools and the atmosphere. SIPNET has a total of 25 

flexible parameters and initial conditions, but is much simpler in structure than ED2.2, as it 

represents a select few processes and drastically simplifies the processes included (Braswell et al., 

2005). 

Estimating transpiration using SIPNET with combined assimilation of NEE and ET 

resulted in a better match to observed data, and accounted for 67% of observed seasonal variation 

in transpiration (T) (Moore et al., 2008). Four key parameters related to resolving ecosystem water 

balance differed significantly depending on which optimized version of the model was used. These 

parameters included initial soil moisture content, water-use efficiency constant, soil water holding 

capacity, and aerodynamic resistance to wind speed (Moore et al., 2008). The improved 

representation of initial soil moisture content and water holding capacity is promising when 

considering applying the same approach to ED2.2 optimization, as ED2.2 has been shown to be 

highly sensitive to soil moisture properties (Longo et al., 2019). The two model versions also 

diverged in response to perturbation of meteorological inputs, such as precipitation. The NEE only 

version of SIPNET was non-responsive to changes in precipitation up to a reduction of 50%, 

whereas the NEE/ET version of the model was sensitive to even small changes in precipitation 

(Moore et al., 2008). As available precipitation is predicted to experience drastic fluctuations in a 

changing climate, and is closely tied to both ET and available soil moisture for ecosystem process 
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as well as overall ecosystem resilience, a realistic model sensitivity to fluctuations is desirable 

(Fisher et al., 2016). When translating precipitation and GPP estimates to water-use efficiencies 

(the ratio of carbon gain to water lost, the photosynthesis/transpiration tradeoff mentioned 

previously), the model version with parameters assimilated with respect to NEE alone predicted a 

ratio of GPP:T an order of magnitude higher than produced by the model conditioned with respect 

to both NEE and ET (Moore et al., 2008). 

Although DA has demonstrated success in reducing uncertainty in simple models, it can 

be argued that the application of DA to constrain simple ecosystem models is subject to the same 

issues of equifinality previously discussed with respect to traditional model calibration methods, 

and thus is fundamentally flawed. Without incorporating sufficient processes to describe 

ecosystem interactions, actual process error is underestimated and parameter values could 

potentially be outside the realm of what is physically realistic, thus the calibrated model is overfit.  

d. Data assimilation in structurally complex models 

Data assimilation involves the use of complex statistical techniques such as Markov chain 

Monte Carlo to resolve probability density functions of parameters and the model state as they 

evolve over time, a process that requires large ensembles of model runs (Zobitz et al., 2011). 

Depending on the parameters of interest and the existing data available, this can mean 104-107 

model runs to isolate ideal parameter or state variable ranges (Fer et al., 2018). For simple models 

with few flexible parameters this is not typically prohibitive, but for complex models data 

assimilation becomes computationally unrealistic, both because number of parameters increases 

by an order of magnitude or more and computational run time for a single realization is much 

longer. In order to apply DA techniques to models that are capable of representing complex 

ecosystem interactions, techniques must be adapted to reduce computational expense. A solution 
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to this problem is the use of model emulation, or an ‘emulator’ during DA. An emulator is a 

simplified statistical model ran in place of a full model for calibration purposes (Wang, 2014). The 

use of an emulator significantly reduces the computational demands of calibration, and allows DA 

techniques to be applied to complex simulation models. For example, a study by Fer et. al. in 2018 

comparing data assimilation-based model calibration methods showed that calibrating ED2.2 

using a class of emulator generated from the difference between model and observation error space 

as opposed to emulating the model alone, led to a decrease in computational time and improved 

model prediction. For example, the emulator calibration of ED2.2 using 100K iterations took 

roughly 27 hours to complete, whereas a traditional DA approach for the same number of model 

runs would have taken approximately 74 years of wall time. The integration of statistical emulators 

within traditional DA methods is a recent development in the field of ecosystem modeling, and 

although studies have demonstrated the ability of DA to reduce uncertainty around model 

predictions and improve our capacity to predict ecosystem dynamics, further testing is required to 

explore the potential of emulator based DA for structurally complex models and determine if the 

same enhancements can be achieved.  

2. Methods 

2.1 Experimental design 

In this study, the Ecosystem Demography model version 2.2 (ED2.2) was used for the 

testing and application of a model calibration process using an emulator approach to Bayesian 

PDA. The use of a structurally complex model such as ED2.2 facilitated an investigation into the 

utility of emulator-based PDA to constrain individual parameter contributions to model predictive 

uncertainty, the primary source of uncertainty in dynamic ecosystem models (Dietze et al., 2013). 
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This study employed a unique approach to emulation, outlined in Fer et al., 2018. Instead of 

constructing an emulator from the direct model output, an emulator was constructed using 

sufficient statistics of the likelihoods (probability of getting ‘X’ model output given vector ‘Y’ 

model parameters), reflecting the interest in the magnitude of disagreement between the model 

and data and allowing for the retention of statistical parameters of the likelihood related to 

predictive error.  

In order to address whether model predictions of NEE can be improved by reducing 

parameter uncertainty through PDA, a series of modeling experiments were developed. PDA was 

conducted with respect to NEE, the predictive variable of interest. Model ensembles were used to 

ensure that the full range of predictions were captured, with each ensemble consisting of 100 

individual runs. Two separate ensembles were used to assess baseline model predictive 

performance and improvement as a result of PDA. Sensitivity analysis and variance decomposition 

were performed to assess individual parameter contribution to model predictive uncertainty, and 

were conducted twice, once prior to PDA to establish initial distributions of uncertainty and once 

post-PDA to assess changes in parameter uncertainty as a result of PDA. Model runs occurred at 

a study site in Northern Wisconsin’s Chequamegon-Nicolet National Forest, with meteorological 

and gas flux data supplied by the WLEF tall tower (Ameriflux site US-PFa), a 447m eddy 

covariance flux tower with an observation record dating back to 1996. The model calibration 

process employed in this study is outlined in Figure 4 and described in greater detail below.  
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Figure 4: Schematic of model calibration workflow  

2.2 Site description 

The study area is located in the Chequamegon-Nicolet National Forest in Northern 

Wisconsin, near the town of Park Falls. Most of the region is heavily forested and trees are 

primarily deciduous but a significant conifer presence exists as well. There is a high degree of 

heterogeneity representative of a typical mid-latitude forest, displaying a diverse array of wetlands, 

meadows, streams, and lakes in addition to forest cover (USDA Forest Service, 2011). 

Heterogeneity is further accentuated by a long history of non-uniform forest management practices 

including thinning and clear-cuts, resulting in increased variability in stand age and structure. The 
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majority of the old growth in the forest was logged in the mid-19th to early 20th century (Desai et 

al., 2007), and a portion of the area was replanted by the Civilian Conservation Corps in the 1930’s. 

Typical homogenous patches of landcover are generally around 20 hectares or less (Desai et al., 

2015).  

 

Figure 5: Map depicting the location of the study site within a regional context. The black circle 

depicts a 60km radius around the location of the Park Falls, Wisconsin WLEF tall tower (adapted 

from Desai et al., 2010). 

The area is of relatively consistent low-grade elevation and has a low density of human 

population. Slight variations in terrain elevation in combination with significant precipitation in 

all seasons results in a mix of saturated (wetland) and unsaturated (upland) sandy loam soils (Davis 

et al., 2003). Upland forests comprise roughly 65% of the landscape (CHEESEHEAD, 2018) and 

deciduous tree types include aspen, sugar maple, red maple, basswood, paper, yellow, and black 

birch, as well as beech and several varieties of oak. Coniferous tree varieties include balsam fir, 

red, white, and jack pine, and white spruce. Wetlands are both forested and unforested and account 

for approximately 35% of the landcover. Wetland tree species include alder, cedar, tamarack, and 
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black spruce (Davis et al., 2003). The area experiences a humid continental climate with warm 

humid summers and cold snowy winters. 

2.3 Model description 

The Ecosystem Demography model version 2.2 (Moorcroft et al., 2001, Medvigy et al., 

2009, Longo et al., 2019) is the model of choice for this study. The Ecosystem Demography model 

(ED2.2) is a size and age structured approximation of an individual-based vegetation model, often 

referred to as forest gap models. In forest gap models, ecosystem descriptors such as carbon pool 

magnitudes and net ecosystem productivity are emergent properties that result from simulated 

competition for resources between plant types with differing abilities to survive (Longo et al., 

2019). This allows for the incorporation of heterogeneity in plant communities, which supports 

direct comparison with field measurements, and realistic spatial and temporal scaling. ED2.2 

divides plant communities by plant functional type (PFT), with each group having distinct 

physiological parameters describing how they function within the larger ecosystem.  

ED2.2 requires input drivers that are specific to the geographic location where the model 

will be run. Required drivers include meteorological data, soil characteristics, and detailed plant 

community information (PFT’s, species diversity, individual tree diameters, etc.). Due to its 

hierarchical spatial structure, ED2.2 is a highly scalable model, and can be run at every level from 

the footprint of a single ECF tower to the entire continental United States. ED2.2 is spatially 

organized into grids, polygons, sites, patches, and cohorts. Grids are the regional or largescale 

areas of geographic interest. Polygons are domains of interest within which the large-scale 

meteorological forcing above the canopy can be assumed uniform (Longo et al., 2019). The 

physical size of the polygon depends on the resolution of the meteorological drivers, but is roughly 

considered to be equivalent to one grid cell in an atmospheric model (1o x 1o or ~100 km). Each 
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polygon is subdivided into one or more sites, with each site representing a region of shared abiotic 

physical properties (soil texture, elevation, etc.). Within each site, disturbance related 

heterogeneity is represented by a series of patches, which are defined by the time since the last 

disturbance and the type of disturbance that caused them. Each patch represents a collection of tree 

canopy gap sized areas (~10m) within a given site. Within patches, cohorts are groupings of similar 

size, age, and plant functional type characteristics (Longo et al., 2019). To account for fine-scale 

variability within the landscape, the energy, water, and carbon cycles are solved for each patch 

separately, and fluxes and storage terms are solved for each cohort within a given patch. Patches 

are not physically contiguous and don’t exchange information or material with each other, 

although they can exchange heat and mass with the shared atmosphere above the patch-specific 

canopy airspace.  

Within ED2.2, thermodynamic properties (including eddy fluxes) are scalable with mass, 

and the model is constructed such that when biomass changes due to plant growth or mortality, 

thermodynamic properties are also updated to reflect changes in heat and water holding capacity. 

Water and energy budget equations for vegetation are solved at the individual level and the 

corresponding equations for environments shared by plants such as soils and canopy air space are 

solved for each micro-environment in the landscape (Longo et al., 2019). ED2.2 treats the 

movement of carbon dioxide (CO2) as a subset of the full carbon cycle, and CO2 storage in the 

canopy air space is independently resolved. The remainder of the carbon cycle is captured as a 

virtual pool of accumulated carbon representing the net carbon balance for a patch. The 

accumulated carbon pool links short term carbon cycle components such as photosynthesis and 

respiration (both heterotrophic and autotrophic) with long-term carbon cycle components related 

to plant growth, reproduction, and mortality (Longo et al., 2019).   
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ED2.2 was the model chosen for this study due to its realistic representation of ecosystem 

processes, its ability to capture successional changes in ecosystem structure and function over time, 

ease of spatial scaling, and model outputs that aligned with primary variables of scientific interest. 

ED2.2 also resolves many fluxes at a sub-daily timestep, allowing for the examination of short-

term physiological responses to environmental conditions in addition to long-term trends (LeBauer 

et al., 2013). The primary output variable of interest in this study was net ecosystem exchange of 

CO2, a key variable related to the terrestrial carbon cycle. Additional ED2.2 outputs are shown in 

Table 1.  

Table 1: ED2.2 final output predictive variables 

Above ground woody biomass Near surface CO2 concentration Subsurface runoff 

Absorbed fraction incoming PAR Near surface module of wind Surface incident longwave radiation 

Active layer thickness Near surface specific humidity Surface incident shortwave radiation 

Albedo Net ecosystem exchange Surface pressure 

Autotrophic respiration Net longwave radiation Surface runoff 

Average layer soil moisture Net primary productivity Time  

Average layer soil temperature Net shortwave radiation Total evaporation 

CO2CAS Rainfall rate Total living biomass 

Crop yield *if crop PFT’s chosen Root moisture Total respiration 

Frozen thickness Sensible heat Total snow depth 

Gross primary productivity Size of respective carbon pools Total soil carbon 

Ground heat SMFrozenFrac Total soil wetness 

Heterotrophic respiration SMLiqFrac Transpiration 

History time interval endpoints Snow fraction Vegetation temperature 

Latent heat Snow temperature Water table depth 

Leaf area index Snow water equivalent  

Near surface air temperature Soil respiration  
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Figure 6: Schematic representation of ED2.2’s hierarchical spatial structure (Longo et al., 2019) 

2.4 The Predictive Ecosystem Analyzer as a workflow tool 

Model runs and calibration were performed using the Predictive Ecosystem Analyzer 

(PEcAn). PEcAn is an open-source ecoinformatics workflow designed to make modeling and the 

characterization of uncertainty associated with models accessible to the broader scientific 

community (Lebauer et al., 2013). A foundational goal of the project is the acceleration of 

scientific progress through serving as a tool for the identification of knowledge gaps and 
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supporting targeted future research (Lebauer et al., 2013). PEcAn contains a variety of models in 

addition to the Ecosystem Demography model version 2.2, the model chosen for this study. Other 

models supported by Pecan at present include Community Land Model (CLM), Simplified 

Photosynthesis-EvapoTranspiration model (SIPNET), Data Assimilation Linked Ecosystem 

Carbon Model (DALEC), PREdict with Large Eddy Simulations (PRELES), Multiple-array 

Assimilation Evaporation Soil Plant Atmosphere model (MAESPA), Lund-Potsdam-Jena General 

Ecosystem Simulator (LPJ-GUESS), LINKAGES, Functionally-Assembled Terrestrial Ecosystem 

Simulator (FATES), and BioCro.  

In addition to providing a platform to run models, PEcAn contains modules to assist in data 

processing, model-data synthesis, and error propagation and analysis. A primary focus of PEcAn 

is error characterization, and in support of this the framework accomplishes two goals: (1) data 

synthesis and error propagation through an ecosystem model and (2) the attachment of information 

value to subsequent data collection to describe its ability to reduce uncertainty (Lebauer et al., 

2013). PEcAn modules used in this study include model-specific input data formatting, meta-

analysis, sensitivity, uncertainty, and ensemble analysis, and parameter data assimilation.  

a. Integrated plant trait database  

Pecan interacts with a plant trait database called the Biofuel Ecophysiological Traits and 

Yields Database (BETYdb) to query prior distributions and other trait data for parameters of 

interest. Trait data are organized by PFT in BETYdb, where each PFT has a suite of parameters 

and their associated distributions, citations, and experimental details as well as a list of plant 

species that fall within that PFT category. PFT’s are broad groupings of plant species based on 

shared structural, phenological, and physiological traits, and are often further sub-divided by 

climate zone (Bonan et al., 2002). An example of a PFT used in this study is ‘temperate late 
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hardwood’, which describes a late successional hardwood tree species in an eastern temperate 

forest, with a default archetype of poplar or birch. PFT’s are used to represent variety in vegetation 

types in land surface models, and break a landscape down into a mosaic of patches with common 

physiological properties. Representing a landscape in this way retains a degree of species diversity 

while allowing for climate and ecosystem processes to be successfully linked in models (Bonan et 

al., 2002). The motivation for associating a plant trait database with Pecan is that in order to 

implement a Bayesian approach to parameter estimation and uncertainty characterization, the 

Pecan workflow must have access to informative trait priors. ‘Priors’ are information known about 

a parameter from previous studies condensed into a representative probability distribution 

(Spiegelhalter and Rice, 2009), a concept that will be explained at greater depth in section 2.6.  

2.5 Bayesian approach to parameter data assimilation 

As stated previously, in structurally complex deterministic models with a large number of 

flexible parameters, uncertainty related to parameter values is a primary driver of overall model 

predictive uncertainty (LeBauer et al., 2013). Parameter uncertainty can be reduced by collecting 

additional data or through the application of PDA. PDA is a way to partition uncertainty by source 

and is used to reduce parameter uncertainty by updating parameter probability distributions to 

yield both best estimates for model parameters as well as their associated uncertainties, and 

propagate those uncertainties into model predictions.  

The importance of incorporating uncertainty statements in model predictions is what makes 

a Bayesian approach ideal for DA. A Bayesian approach allows for uncertainty from different 

sources to be propagated through the PDA process and attached to final predictions, for parameter 

distributions to be iteratively updated as new information becomes available, and it facilitates 

model calibration with multiple data streams. The use of multiple data streams allows for the 
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combination of data of different types and timescales (eddy covariance, satellite-derived, direct 

biomass measurements, etc.), which has been shown to better constrain parameters and result in 

more accurate predictions (MacBean et al., 2016). The term ‘Bayesian approach’ refers to the 

application of Bayesian statistical methods (centered around Bayes theorem) to make predictions 

and represent the uncertainty associated with those predictions. A key element of Bayesian 

statistical methods is that ‘known’ information can continually be updated as new information is 

uncovered. Bayesian methods start with existing prior beliefs, referred to as ‘priors’; in the context 

of a model parameter this could be the value range it is believed that a parameter could fall within, 

drawn from existing literature. Priors for a given parameter are then updated as new data is made 

available through experimental trials or PDA. This updated version of the priors from PDA are 

referred to as the ‘posteriors’, which are then used as priors in subsequent model runs (Van Oijen 

et al., 2017).   

Bayes theorem itself represents a conditional probability, and provides the posterior 

distribution mentioned above. Given two random quantities 	 and θ, where y represents data and 

θ represents parameters in a statistical model, Bayes theorem can be stated as shown in Equation 

3.   

Equation 3: Bayes theorem, a theorem from probability theory and statistics describing the 

probability of an occurrence, based on prior knowledge related to the occurrence 


��|	 =  

�	|�
��


�	
 


�� represents the prior distribution for a parameter, or what is thought about the parameter before 

looking at the dataset in question. Priors and posteriors are represented as probability distributions 

not as single values, so they each represent a continuous range of possible values a parameter could 
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take, situated between a minimum and a maximum. The probability distribution is described by a 

probability density function, which provides the probabilities of occurrence for different potential 

outcomes. The value of the function at any given sample in the distribution space represents the 

relative likelihood that the value of the random variable would equal that sample. The prior 

distribution is combined with 
�	|�, the likelihood, to generate 
��|	, the posterior distribution. 

The likelihood function is maximized and used to estimate the parameters of a probability 

distribution so that the data that’s actually observed is represented as the most probable values by 

the statistical model (Spiegelhalter and Rice, 2009). The posterior distribution is created by using 

information about a parameter from observational data (the likelihood function), to update a prior 

state of beliefs about a parameter to become a posterior state of beliefs about a parameter or set of 

parameters (Ravenzwaaij et al., 2018), so it can be thought of as a compromise between the 

likelihood and the prior distribution. In Bayesian model calibration, the initial parameter values to 

be used to initiate Markov Chain Monte Carlo (MCMC) model runs are sampled from the 

generated posterior distribution (Dietze et al., 2014). An important distinction to make when 

applying a Bayesian framework in PEcAn is that each parameter of interest is required to have a 

prior distribution of its own, but the final output is the joint posterior probability of all parameters, 

so the posterior probabilities that are generated are not fully independent of each other (The PEcAn 

Project).  

2.6 Basis of emulation for parameter data assimilation 

PDA is the application of data assimilation methods to model parameters specifically, as 

opposed to state variables, as is commonly done in numerical weather prediction. The goal of PDA 

is to improve the ability to predict ecosystem response, and reduce the degree of uncertainty 
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surrounding those predictions by reducing the contributions of individual parameter uncertainty to 

overall predictive uncertainty.  

b. The emulator method  

Optimizing a model often requires tens of thousands of model runs to land on ideal 

parameter ranges, which can result in computational constraints if the model of choice requires a 

large amount of Central Processing Units (CPUs) to run. An emulator is a simplified statistical 

model used in place of a full model for calibration purposes (Sacks et al., 1989), and is one solution 

to the computational limitations of model optimization. The emulator used in this study is unique 

in that it isn’t a simplified version of the full model itself, but instead represents the response 

surface of the full model (Wang et al., 2014), specifically the difference between the model and 

observation error space (Fer et al., 2018). An emulator is used when the full model is too complex 

to facilitate the use of data assimilation methods for calibration, as it would be computationally 

unrealistic.  

The more traditional data assimilation method is referred to as ‘brute-force’, where after a 

parameter value is proposed the full model is run once, likelihoods and posteriors are evaluated, 

the DA algorithm of choice proceeds until a probability density function is generated, and then the 

process repeats itself many times. This technique is significantly slower, as the computationally 

costly step of running the full model needs to be accomplished separately for each algorithm 

iteration, whereas in the emulator approach model runs are parallelized (Fer et al., 2018). A visual 

comparison of brute-force and emulator calibration methods are shown in Figure 7.  

For dynamic ecosystem models such as ED2.2, the model’s computational demands make 

a traditional ‘brute-force’ calibration method impossible (Fer et al., 2018), as it involves running 
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the full model a large number of times (upwards of 50,000) and evaluating output. Such a large 

number of runs is computationally expensive for even simple models but prohibitive for complex 

models, where such a high number of runs could realistically take years of wall time.  
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Figure 7: Comparison of brute-force and emulator approaches from Fer, 2018. The axis T 

represents sufficient statistics values on the y-axis, and P represents parameter values on the x-

axis.  

PEcAn can support both brute-force and emulator approaches to model calibration, but due 

to the computational complexity of ED2.2, an emulator approach was used in this study. In the 

emulator workflow, a set of ‘N’ parameter vectors are chosen from a given parameter’s 

distribution, and the full model is run with this set of initial parameter values. Model output from 

each run is compared to observational data for a variable of interest (such as NEE), and a sufficient 

statistic representing deviations of predictions from observations is calculated (shown as ‘T’ in 

Figure 7). Note that model error (T) is calculated instead of the likelihood itself. Next, a simplified 

statistical model is fit through the sufficient statistic points (referred to as knots) that are generated 

through evaluating the full model. In this study, a Gaussian process model was used, as it has been 

shown to be the ideal model form for emulator construction (Wang et al., 2014). The statistical 

model acts as a response surface, describing how model error varies across a given parameter 

distribution, and interpolating model output in the parameter space between where the full model 

was actually run. The statistical approximation itself is known as the emulator, and the process of 

fitting it to the generated knots is known as ‘building’ the emulator on the statistical surface. The 

emulator building step includes error estimates around the constructed emulator.  

Once the emulator is built, the full model no longer needs to be run and the emulator can 

instead be used in place of the full model in subsequent PDA steps, such as MCMC. New 

parameter values can be proposed, and the emulator estimates possible values of the response 

variable in a fraction of the time that would be required for the full model to do so. The actual 

construction of the emulator can be time consuming, as the full model must be run many times, 
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but since model runs are independent of each other computational time can also be saved here by 

parallelizing these construction runs, which is the standard in PEcAn. Since the emulator is being 

used here in the Bayesian sense, the statistical approximation being fit is really a likelihood 

function. In PEcAn, the actual likelihood itself isn’t calculated, instead the emulator calculates the 

statistics of the likelihood, which contain all the information to calculate the likelihood without 

actually doing so. This allows for the statistical data behind a given likelihood to be retained, so 

important information about a likelihood such as its error statistics can still be calculated (Fer et 

al., 2018). One downside of this approach is that because a sufficient statistic is calculated instead 

of an overall likelihood, if you wish to calibrate with respect to more than one variable, an emulator 

must be constructed for each variable of interest.  

The number of parameter vectors and thus knots that are proposed is an important choice 

when setting up the emulator. Using too few initial parameter vectors will slow convergence to 

optimal function values. Opting for more knots means the parameter space will be more thoroughly 

sampled, resulting in less approximation error. However, more knots also mean more computation 

time and expense, potentially reducing efficiency (Wang, 2014). Choosing where to place knots is 

another complex problem, as picking random locations in parameter space could result in 

uninformative points, for example points that are very close together, or that lie in the tails far from 

the mean of a parameter’s distribution. PEcAn utilizes a Latin hypercube (LHC) design to choose 

knot locations, where the number of desired knots is user prescribed, but the location of knots is 

generated from a sequence of values for each parameter. LHC is an extension of stratified 

sampling, and ensures that the full range of a parameter’s distribution is sampled (Sacks, 1989). 

LHC’s are an attractive option because they are very computationally cheap to generate, and the 

sampling design is more suited to the objective of understanding how a known distribution of 
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initial parameter values propagates through to an output distribution (Sacks, 1989). Each sequence 

represents values across the quantiles of the prior distribution for a given parameter, and is 

randomly permuted independent of the other sequences to construct the overall design matrix (Fer 

et al., 2018).  

In this study, emulator-based calibrations were run with three MCMC chains constituting 

25,000 iterations. 230 total knots were generated, corresponding to roughly 16 knots for each 

parameter chosen, following the advice of PEcAn developers to use at least 10 knots per parameter.  

More information about chosen parameters is contained in section 3. For NEE focused PDA the 

full model runs required to inform emulator construction took approximately seven days, Gaussian 

process model fitting took 7.9 minutes, and the emulator took 109.84 (~4.5 days) hours to complete 

25,000 iterations.  

2.7 Process of model calibration 

c. Data preparation  

As presented in Figure 4, the first step of model calibration is input data assembly. Data 

required by the model as drivers must be assembled, quality checked, gap-filled if needed, and 

restructured into the format required by the model. For ED2.2, this includes meteorological driver 

data from eddy covariance flux towers, vegetation initial state files, and soil characteristics data. 

Meteorological drivers include temperature, specific humidity, CO2 molar fraction, air pressure 

above the patch canopy, precipitation, wind speed, and shortwave and longwave radiation (Longo 

et al., 2019). Meteorological data are collected at a variety of timescales (in accordance with 

AmerifluxLBL standards), but all are sub-daily to facilitate accurate simulation of the diurnal 

cycle.  
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Vegetation initial state files describe forest composition and structure during a snapshot in 

time, generally the start year for a model simulation if data is available. These files come from the 

Forest Inventory and Analysis (FIA) dataset, a ‘forest census’ product compiled by the USDA 

Forest Service to document the health, structure, and distribution of forests across the United 

States, with inventories taking place as early as 1930. These are separated into files corresponding 

to the cohort and patch levels. Cohort files contain information about the year, patch number, 

cohort number, tree diameter at breast height, and PFT. Patch files contain site number, year, patch 

number, age, the percentage of the cohort area that the patch occupies, in addition to information 

about soil carbon and nitrogen stocks (both fast and slow). Site level files include information 

about elevation and soil type. Soil characteristics drivers include soil texture, number of soil layers, 

bottom boundary conditions (bedrock, free or reduced drainage, water table), and soil color. For 

ED2.2 in PEcAn soil texture is user-prescribed, provided as percentage of clay and percentage of 

sand, but other soil-related drivers come from the linked Food and Agriculture Organization of the 

United Nations (FAO) database. Once data is assembled an initial test run of the model is done to 

ensure settings are functional and there are no major discrepancies between the modeled output 

and observed data. Since model calibration in PEcAn utilizes a Bayesian approach, informative 

priors must be constructed for all flexible model parameters.  

Before the process of PDA can begin, influential parameters are chosen from the suite of 

available flexible model parameters to target for PDA. ED2.2 has a large number of flexible 

parameters that vary depending on plant functional type, and a single PFT usually has ~20 

parameters. PDA is computationally expensive for a model as complex as ED2.2, so only a handful 

of parameters can be chosen to target. Given this constraint, it is ideal to choose parameters that 

will be most impactful in reducing overall uncertainty and improving model fit (Fer et al., 2018). 
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A parameter can be impactful if it is either poorly constrained (uncertain) or if the model is highly 

sensitive to it, and both parameter uncertainty and sensitivity contribute equally to model 

predictive uncertainty (Dietze, 2017). Generally speaking, a parameter must be both sensitive and 

uncertain to some degree to be considered a good target for PDA. To assist in systematically 

analyzing and representing model component uncertainty as well as in the selection of high-impact 

parameters for PDA, PEcAn has an automated workflow consisting of three steps: meta-analysis, 

parameter sensitivity analysis, and variance decomposition analysis.  

d. Uncertainty examination  

During meta-analysis observational trait data such as prior probability distributions, sample 

means, error statistics, and study metadata are extracted from PEcAn’s companion trait database 

BETYdb for each parameter within each plant functional type (Dietze et al., 2014). With this data, 

a Bayesian met-analytic model is fit for each trait within each PFT, and is used to generate a 

posterior probability distribution for the mean of each flexible model parameter. Using a 

hierarchical meta-analysis approach to construct the posterior probability distribution allows the 

distribution to come from the synthesis of information across multiple laboratory and observational 

studies, as opposed to a single study estimate (Dietze et al., 2014). As research proceeds and more 

data about parameter properties are made available, the meta-analytic model can be re-fit, and the 

posterior distributions updated to reflect the current scientific knowledge base. The posteriors 

generated through meta-analysis return later in the workflow as priors to be used in data 

assimilation.  

The process of sensitivity analysis is used to determine which parameters the model is most 

sensitive to, meaning which parameters result in the largest change in model output when they are 

represented with slightly different values. Parameter sensitivity analysis involves repeating a 
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prescribed number of model runs (ensemble of size n) with different parameter perturbations in 

order to assess how slight changes in parameter values will affect specified model outputs. In 

PEcAn, parameter values are varied according to the quantiles of the posterior parameter 

distributions generated through meta-analysis, with a user-prescribed standard deviation from the 

mean value of their respective density functions (LeBauer et al., 2013). For this study, each 

parameter was varied + 1 and 2 standard deviations (σ) from the mean value, resulting in five 

variations on a given parameter value for each run: -2σ, -1σ, 0, 1σ, 2σ, where 0 represents the mean 

value. A response function describing the given model output variable as a function of each 

parameter value is then generated (Dietze et al., 2014).  

Variance decomposition combines information about both the uncertainty and sensitivity 

of parameters to estimate how much each input parameter contributes to overall uncertainty in 

model predictions (LeBauer et al., 2013). Variance decomposition is done by transforming the 

posterior parameter distribution generated through meta-analysis with the sensitivity function from 

parameter sensitivity analysis (Dietze et al., 2014). Variance decomposition output in PEcAn 

involves two variables: the coefficient of variation (CV), and the elasticity. The coefficient of 

variation (also known as the relative standard deviation) is a measure of the dispersion of a 

probability or frequency distribution. In other words, it’s the uncertainty associated with each 

parameter, where a higher CV represents a higher level of uncertainty. The elasticity of a parameter 

is the sensitivity of the model output to each parameter normalized by both the parameter and 

variable output means. For example, an elasticity value of one means that a one percent change in 

the input variable results in a one percent change in the output variable, so higher elasticity values 

mean a parameter has a disproportionate impact on the model. Elasticity and CV are both taken 

into account to generate the partial variance for a given parameter. Partial variance is used to look 
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at the overall predictive uncertainty because it’s normalized across sensitivity and parameter 

variance so units can be disregarded and uncertainty is expressed as a percentage, making it easier 

to compare across parameters with a wide range of units.   

Once target parameters have been chosen through variance decomposition, an ensemble of 

size n is run, with each run sampling values from a given parameter’s uncertainty distribution to 

create a probability distribution of model projections. Ensemble analysis is used to place a 

confidence interval on the model, which is important when interpreting model output, and ensuring 

that the model is making predictions that are within the range of reality. As a final feasibility check 

before proceeding to PDA, the degree of uncertainty in model predictions is compared to what is 

observed in reality, and it’s ensured that variables have been constrained with additional data to 

reduce uncertainty where possible. 

e. Parameter data assimilation  

Once PDA officially begins, the first step is to propose initial parameter value sets. The 

values come from prior information about the chosen parameters drawn from meta-analysis. Once 

initial parameter values have been proposed, the full model is run for each parameter set, using 

initial vegetation files and meteorological data as drivers. This step in the process if often time 

consuming, as with a complex model like ED2.2 the full model runs step can take several days to 

a week or more depending on computing power. Once full model runs are complete, likelihoods 

are evaluated for each parameter set. The full model output is compared to observational data and 

the likelihood is calculated using a heteroskedastic Laplacian, which allows variance to change 

with flux magnitude.  
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Following likelihood calculation, the next step is emulator construction, described 

previously. The emulator is constructed on the likelihood surface and interpolates model output in 

parameter space between the points where the model has actually been run. After the emulator has 

been built, it’s passed along to the sampling strategy and assessment algorithm in place of the full 

model, and posterior probability density functions are estimated for each parameter in question. 

There are a variety of sampling and assessment algorithms that can be used in PDA, but the 

approach used in this study was MCMC sampling with an adaptive Metropolis-Hastings algorithm. 

MCMC is a fundamental element of the PDA approach applied in this study and is a specific type 

of Monte Carlo method, which are often used in Bayesian statistics to make inferences using data. 

Monte Carlo methods take a given probability distribution and use a computer-generated sample 

set from that distribution to calculate a ‘plug-in estimate’ for a feature of interest of the given 

distribution, where the feature of interest might be the mean or the variability of the distribution. 

The calculated plug-in estimate is called the ‘Monte Carlo approximation’ of the true distribution 

function (Taboga, 2017). Plug-in estimates are applied in probability theory related statistics to 

estimate features of the probability distribution when it’s difficult or impossible to precisely 

compute the feature itself. Essentially the plug-in principle proposes that a difficult to compute 

feature of a given distribution can be approximated using the same feature of an empirical 

distribution created from samples drawn from the given distribution (Taboga, 2017). An empirical 

distribution describes a sample of observations of a variable of interest. To actually use this method 

to approximate the value of a given variable, multiple computer-generated sample sets would be 

pulled from the distribution in question, plug-in estimates would be generated for each generated 

sample, and the final value for the feature in question would be the mean value of that feature from 

the computer-generated samples of observations.  
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The key distinction between MCMC and classic Monte Carlo is that MCMC uses these 

techniques to generate sample sequences of dependent observations, whereas classic Monte Carlo 

relies on samples made up of independent observations. The sample sequences of dependent 

observations that are generated are known as Markov Chains. The chain of values represents 

estimates from each step in a quasi-random walk through a given parameter’s target distribution. 

Each chain is initialized with starting values for each of the parameters isolated for PDA. 

Eventually the walk-through parameter space converges to the target distribution, so the accepted 

parameters approximate the true parameter distribution and the model is said to have ‘converged’ 

and is a good representation of reality (Taboga, 2017).   

MCMC begins with a single guess for the starting value of a parameter. This value is 

chosen at random from the posterior distribution of the parameter of interest. In PEcAn, the 

posterior distribution values are chosen from is the distribution generated for a given parameter 

during meta-analysis. From the starting value, a jump is proposed to move from that position to 

another location in the chosen parameter’s posterior distribution. In PEcAn the jump and landing 

location is proposed by an adaptive Metropolis-Hastings algorithm, which pulls a sample from a 

normal distribution centered around the current parameter position, with a prescribed standard 

deviation that sets the distance of the jump (Fer et al., 2018). Before actually making the leap, the 

suitability of the proposed jump location must be assessed. If the resulting distribution from the 

proposed position explains the data better than the old position, then it’s a good jump to make. 

How well the new position explains the data is calculated by computing the probability of seeing 

that value given the observed data, and computing the likelihood. The likelihood corresponding to 

each new jump location is approximated by the emulator and the new value is accepted or rejected 

based on its posterior probability relative to the current parameter value. If the proposed value is 
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accepted, the jump takes place and it becomes the next value in the chain, otherwise the jump to 

that location doesn’t take place and the next sample in the chain is just a copy of the current sample 

(Sherlock et al., 2010).  

One way to interpret good versus bad jump locations is through the idea of “uphill” and 

“downhill” proposals. Uphill proposals are proposed jump locations that take the chain closer to a 

local mode, and are always accepted, whereas downhill proposals are accepted or rejected with 

probability exactly equal to the relative “heights” of the posterior at the proposed and current 

values. The more frequent rejection of downhill proposals is what keeps the Markov chain 

generally in the main posterior of the distribution (Ravenzwaaij et al., 2018). This process 

represents one iteration of MCMC, and is repeated until the posterior distribution has been 

thoroughly explored and enough samples are generated for the walk to converge to the target 

distribution.  

A key issue with MCMC is that since the starting value for a parameter is chosen at random, 

even though it is pulled from the posterior distribution it might not necessarily be representative 

of that distribution. For example, if the starting parameter values for a chain are located near the 

mode of the true distribution, then they’re representative of the majority of the data, MCMC output 

can be trusted, and the chain is representative. However, if the starting parameter values are from 

the tails or represent more extreme values far from the true distribution of the data, then more 

iterations are required before the chain approaches the sample mean. The portion of the chain that 

represents the iterations prior to approaching the true sample mean is known as the ‘burn-in’ 

period, and is generally removed from the final output to prevent an incorrect reflection of the 

updated posterior distribution. Using multiple chains is one way to ensure that MCMC 

convergence output is reliable. Each chain is initialized with different starting parameter values 
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sampled from the distribution, and runs through n iterations. In this study, three chains were used 

to ensure convergence, running through approximately 25,000 MCMC iterations each.  

So how can you tell if chains have actually converged? MCMC convergence is initially 

assessed visually, followed by statistical diagnostics if a more objective method for assessing burn-

in is desired. A common statistic to determine whether or not chains have converged is the Gelman-

Brooks-Rubin statistic, � � , which compares the variance within each chain to the variance across 

all chains (Gelman and Rubin, 1992). In PEcAn, this is how burn-in periods are determined. If the 

chains have converged perfectly then � � should equal 1. Values less than 1.1 are typically 

considered sufficient, but anything larger indicates a lack of chain convergence. When running a 

Gelman diagnostic on the MCMC chains produced in this study, a threshold value of 1.1 was used. 

f. Model performance assessment 

If the emulator is being run in rounds, the PDA process cycles back to the beginning and 

re-proposes a percentage of the parameter value sets from the posterior of the previous round and 

a percentage from the initial prior distribution before running through the whole process again. At 

the end of PDA, a final posterior distribution is generated for the parameter set that was initially 

proposed. This updated posterior distribution represents the combination of prior knowledge and 

observational data to provide a better estimate of a parameters true value range. This updated 

posterior distribution is then used as the parameter’s prior distribution when the model is 

subsequently run, and variance decomposition is repeated to asses changes in parameter 

uncertainty and overall model fit as a result of PDA. The calibrated version of the model can then 

be run as an ensemble against the data used to do the calibrating, additional data at the same 

location (such as switching the variable you’re interested in predicting), and new data from a 

different location. Running the model against data not used for calibration ensures that the 
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calibrated model is actually representative, and not overly fit to the training dataset (Richardson et 

al., 2010). Model performance is assessed through statistical analysis, and it’s determined if any 

of the previous calibration steps need to be revisited.  

2.8 Statistical analysis  

Statistical analysis performed in this study can be segregated as it relates to three primary goals:  

(1) Determine if the PDA process was successful 

(2) Quantify the degree of uncertainty reduction in individual parameters  

(3) Gauge how overall model predictive uncertainty changed as a result of reducing 

parameter uncertainty through PDA 

(1) Determining PDA success 

PDA success is first determined visually using trace diagrams, marginal density plots, and 

Gelman plots. Visual assessment is then confirmed using the Gelman-Brooks-Rubin diagnostic 

statistic to determine chain convergence. Finally, correlations between parameters are assessed. 

Following the completion of the MCMC portion of PDA, four plots are generated for each targeted 

parameter within each PFT: trace, marginal density, Gelman, and correlation plots. Trace plots 

show the sampled values of a given parameter over time, with time represented as model iterations. 

Trace plots help assess mixing of chains and how quickly the MCMC process converges in its 

distribution. An ‘ideal’ trace plot exhibits rapid up-and-down fluctuations with no discernable 

long-term trends or drifts, with all plotted chains showing similar patterns. Long-term trends or 

drifts as well as large differences between chains indicate slower convergence or a lack of 

convergence (Robert and Casella, 1999). Figure 8 depicts successful MCMC chain convergence 

for the parameter ‘respiration optimal water’, a soil parameter targeted for PDA. Three chains were 
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used in this study for each parameter; the trace plot shows three different plotted elements 

corresponding to each chain represented by the colors green, red, and black. 

 

Figure 8: MCMC trace plot for the soil parameter ‘respiration optimal water’. The number of 

model iterations (a stand in for time) is displayed on the x-axis, and the sampled parameter values 

are displayed on the y-axis. The wide spread across the y-axis indicates a sufficient number of 

sampled were used for MCMC, and the consistency in the plots over time as well as similarity 

between chain patterns indicates convergence.  

 

Marginal density plots are essentially a smoothed histogram of the values shown in the 

trace plot, the distribution of the values of a given parameter in the chain. Values are averaged 

over the values a parameter takes across all model iterations with other parameters marginalized 

to remove correlations between parameters. A marginal density plot indicates PDA success for a 

given parameter when the plot is void of any sharp peaks or valleys, as shown in Figure 9. Density 

plots will often have an approximately normal distribution, while others may be skewed, have 

clearly defined boundaries, or even on occasion distributions can be multimodal. There is no 

requirement in Bayesian statistics that the distributions be normal, as long as MCMC has 
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converged. However, it is worth noting that the most common cause of multi-modal posteriors is 

a lack of convergence (The PEcAn Project). 

 

Figure 9: Marginal density plot for the parameter stomatal slope belonging to PFT Early 

Hardwood. On the x-axis, ‘N’ corresponds to the number of MCMC model iterations, and 

‘bandwidth’ is the value used for smoothing (calculated using the minimum of the standard 

deviation, the interquartile range, and the sample size). What appears as a solid black line on the 

x-axis is actually a high number of closely placed ticks represented the actual samples used. 

Average parameter values are displayed on the y-axis.  

 

The Gelman-Brooks-Rubin diagnostic statistic (� � ) can be calculated to compare the 

variance within each chain to the variance across all chains and confirm chain convergence 

(Gelman and Rubin, 1992). A diagnostic statistic (also called a ‘shrink factor’) of one means 

between chain variance is approximately equal to within chain variance and chains have converged 

perfectly, while larger values signify a notable difference between chains. A general rule of thumb 

is that shrink factor values below ~1.1 signify acceptably low variation between chains, this was 

the threshold value used in this study. Gelman plots are used to assess how similar MCMC chains 
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are, as a way to detect if they’ve collectively approached the target distribution. The Gelman plot 

shows the development of shrink factors over time, which helps illuminate whether a chain 

reduction is stable or if the factors fluctuate with time.  

 

Figure 10: Gelman plot for the parameter ‘root turnover rate’ belonging to PFT Late Hardwood. 

The plot displays a shrink factor roughly around 1.05, indicating acceptably low variation between 

the three chains used in MCMC. It can be seen that what little fluctuation exists in the shrink factor 

is primarily near the start of PDA, with fluctuations leveling out over time.  

 

Correlation matrices are used to show pairwise correlations between parameters targeted 

for PDA. Evaluating correlation is an important check when assessing PDA results, as strong 

correlations between parameters can signify that optimization of one parameter could dramatically 

impact another, skewing PDA results and complicating analysis.  

(2) Individual parameter uncertainty  



46 

 

 

 To assess how well uncertainty surrounding individual parameters was reduced through 

PDA, sensitivity and uncertainty analysis were conducted both before and after PDA, and the 

change in percent contribution to variance was determined for each parameter on a PFT basis.  

(3) Model predictive uncertainty 

Overall model performance is assessed by comparing metrics from 100-member ensembles 

run with both pre-and-post PDA settings. Each run is of a single year duration (2008), with 

parameter values randomly sampled from their respective distributions, such that each ensemble 

run used slightly different parameter values. Reduction in model uncertainty and thus improvement 

in model performance is assessed using root mean square error (RMSE) and variance 

decomposition. Bias in model predictions is often assessed by fitting a linear regression and 

calculating R2 and residual error, the difference between a data point and the regression line. 

However, these metrics are not appropriate to determine model bias in this study, as neither the 

model nor the predictions are linear. Instead, RMSE should be used in place of residual error for 

calculating R2, as it is based on deviations from the 1:1 line obtained by comparing model 

predictions against observed values and not on deviations from a linear regression line. RMSE can 

be visualized through a predicted versus observed plot. In a perfect model the data would fall 

exactly along the 1:1 line. The deviations away from this line are the model residuals. If 

observations lie along a line other than the 1:1 this indicates that the model is biased in some way 

(Clayton and Zhu, 2017). Completing sensitivity analysis and variance decomposition for model 

runs using post-PDA settings allows for comparison of how contributions to model predictive 

uncertainty from individual parameters were altered as a result of PDA.  
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3. Results 

3.1 Parameter selection  

Our first step is to identify suitable parameters for data assimilation, based on how well 

constrained they are and how sensitive the model is to them. Although sensitivity analysis and 

variance decomposition are helpful analyses to use in choosing parameters, they should not be the 

only determining factor. Model structure must also be considered, primarily how relationships 

between parameters are represented, and if parameters have competing or overly identical roles 

(Fer et al., 2018). The representation of parameter relationships in a model can also give important 

insight to understand variance decomposition output. For example, ED2.2 simulates stomatal 

conductance, an important variable in determining photosynthetic rate, using the Ball-Berry 

model. In this study, the parameter stomatal slope had the third highest average partial variance 

(23.506%) of all the flexible parameters, indicating that the model is highly sensitive to stomatal 

slope and that it causes a significant portion of the overall variance in model output. Stomatal slope 

is a primary driver of stomatal conductance (Dietze et al., 2014). Cuticular conductance also had 

a high average partial variance, and was one of the parameters chosen for PDA. Cuticular 

conductance again plays a key role in the Ball-Berry model (Duursma et al., 2018). Both of these 

parameters ranking as ideal targets for PDA demonstrates not only the importance of stomatal 

conductance and photosynthetic rate in the structure of the model, which is intuitive when looking 

at carbon or water flux through an ecosystem, but also highlights the relatively high degree of 

uncertainty contributed to the overall model by this photosynthesis-related sub-model.  

In this study uncertainty analysis was conducted twice: once to assess uncertainty and 

determine which parameters to target for PDA then again post-PDA to assess changes in parameter 
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uncertainty and determine if PDA was able to reduce overall model predictive uncertainty through 

the reduction of uncertainty contributions from individual parameters. Uncertainty analysis runs 

will now be referenced as ‘pre-PDA’ or ‘post-PDA’ runs.  

Table 2: Calibrated ED2.2 Parameters (predictive variable = NEE) 

Parameter Category Description Units 

Growth respiration 

factor Plant phys. Proportion of daily carbon gain lost to plant growth respiration fraction  

Stomatal slope Plant phys. 

Slope of relation between stomatal conductance and photosynthetic 

rate term (A) ratio 

Water conductance Plant phys. "Water availability factor", sets a plant's supply of water 

m-2 a-1 (kgC 

root)-1 

Cuticular conductance Plant phys. Leaf (cuticular) conductance when stomata fully closed μmolH2Om-2 s-1 

Root turnover rate  Plant phys. Rate of fine root loss (temperature dependent) 1/yr 

�����  Plant phys. Maximum rubisco carboxylation capacity μmolCO2m-2 s-1 

Respiration temp. 

increase 

Soil 

biogeochemical 

how rapidly heterotrophic respiration increases with increasing 

temperature 1/K 

Respiration optimal 

water 

Soil 

biogeochemical 

Optimal soil water for heterotrophic respiration as fraction of max 

possible soil water 

dimensionless, 

range 0-1 

 

Initial uncertainty analysis identified eight ideal parameters to target for PDA, with six 

related to plant physiological properties and two soil biogeochemical parameters related to 

decomposition. Parameters chosen for PDA are common across all five plant PFT’s with the 

exception of cuticular conductance, which is unique to the PFT ‘temperate.Late_Hardwood’ in 

this study. Plant physiological parameters were growth respiration factor, stomatal slope, water 

conductance, cuticular conductance, root turnover rate, and Vcmax. Soil parameters were respiration 

temperature increase, and respiration optimal water (see Table 2). Contribution to overall 
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uncertainty from the listed parameters varied according to PFT, and not all parameters chosen were 

shown to be influential across all PFT’s (Figure 11).  In fact, the only parameter shown to 

contribute to a high degree of uncertainty across all plant PFT’s was water conductance. Partial 

variance was calculated for a given parameter’s contribution to uncertainty within each PFT, and 

then averaged across all PFT’s, representing the overall contribution to variance. Parameters were 

filtered to weed out those with low contributions to model uncertainty. Only parameters shown to 

contribute greater than 1.1% of overall model uncertainty (averaged partial variance) were chosen 

for PDA. As shown in Figure 11, growth respiration factor was the most influential vegetation 

parameter, with a pre-PDA average partial variance of 34.51%, followed by water conductance 

(26.41%), stomatal slope (23.51%), cuticular conductance (20.40%), root turnover rate (4.02%), 

and lastly Vcmax (3.74%). Descriptions of each parameter chosen for PDA are provided below.  
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Figure 11: Results of uncertainty analysis for plant physiological parameters in NEE focused 

ED2.2 model runs, displayed as partial variance. Impact is displayed by plant functional type, 

with a longer bar corresponding to a larger contribution to overall model predictive uncertainty. 

 

Figure 12: Results of uncertainty analysis for soil biogeochemical parameters in NEE focused 

ED2.2 model runs, displayed as partial variance. A longer bar corresponds to a larger 

contribution to overall model predictive uncertainty. 
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Figure 13: Results of uncertainty analysis for plant physiological parameters in NEE focused 

ED2.2 model runs, with partial variance averaged across all plant functional types present.  
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Table 3: Pre-PDA prior distributions used in meta-analysis and model parameterization (variable = NEE). 

Format is distribution type(a, b). EH = temperate.Early_Hardwood, LC = temperate.Late_Conifer, LH = 

temperate.Late_Hardwood, NH = temperate.North_Mid_Hardwood, NP = temperate.Northern_Pine 

Plant physiological 

parameters           

  EH LC LH NH NP 

Growth respiration factor beta(4.06, 7.22) beta(2.63, 6.520) beta(4.06, 7.2000) beta(2.63, 6.5200) beta(2.63, 6.5200) 

Stomatal slope 

uniform(2.00, 

16.000) 

uniform(2.00, 

16.000) 

lnorm(1.76, 

0.3800) 

uniform(2.00, 

16.000) 

uniform(2.00, 

16.000) 

Water conductance lnorm(-5.4, 3.000) 

lnorm(-5.40, 

3.000) 

lnorm(-5.40, 

3.000) 

lnorm(-5.40, 

3.000) 

lnorm(-5.40, 

3.000) 

Root turnover rate  

uniform(0.00, 

10.000) 

uniform(0.00, 

10.000) 

weibull(1.55, 

0.8620) 

uniform(0.00, 

10.000) 

uniform(0.00, 

10.000) 

Vcmax 

uniform(0.00, 

500.000) 

uniform(0.00, 

500.000) 

weibull(1.70, 

800.0000) 

uniform(0.00, 

500.000) 

uniform(0.00, 

500.000) 

Cuticular conductance NA NA 

lnorm(9.40, 

0.70000) NA NA 

Soil biogeochemical parameters         

Respiration temp. increase uniform(0.05, 0.20) 

    
Respiration optimal water beta(1.000, 1.00) 

    

 

Growth Respiration Factor 

Plant cellular respiration is often broken down into contributions from both growth and 

maintenance respiration. Growth respiration is cellular respiration associated with plant growth 

processes, such as synthesis of new structures and nutrient uptake. Maintenance respiration is 

associated with protein and membrane turnover, and maintaining ion concentration gradients 

(Lotscher et al., 2004). The majority of total plant cellular respiration is associated with 
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maintenance, with a small fraction remaining for growth and growth respiration (Iersel et al., 

2003). The growth respiration factor is a constant fraction of the net assimilation rate associated 

with biosynthesis of metabolites for plant growth (Dietze et al., 2014). Main controls on growth 

respiration factor are the associated costs of biosynthesis. Due to the fact that growth respiration 

factor in ED2.2 integrates a number of respiratory processes, it is challenging to directly measure 

and few quality observational data exist.  

Stomatal Slope 

ED2.2 models stomatal conductance using a variant of the classic Ball-Berry model 

outlined in Leuning et. al 1995, where stomatal conductance is primarily driven by stomatal slope. 

Stomatal conductance is the rate of CO2 uptake or water vapor release through the stomata on a 

leaf’s surface. Stomatal conductance is directly related to the boundary layer resistance of a leaf’s 

surface, and thus the concentration gradient of water vapor between the leaf and surrounding 

atmosphere, making it an integral variable in leaf-level calculations of transpiration (Taiz et al., 

1991). Stomatal slope represents the relationship between stomatal conductance and an aggregated 

term representing photosynthetic rate, CO2 concentration, and vapor pressure deficit (Dietze et al., 

2014).  Stomatal slope can be estimated using stomatal response curves from leaf-level gas 

exchange (Dietze et al., 2014).  

Water Conductance 

Water conductance controls the supply of water from soil moisture that is available to be 

taken up by a plant. In ED2.2 water conductance isn’t a trait that can be experimentally measured, 

it’s an upper bound value placed on transpiration. ED2.2 calculates water conductance as a 

function of available soil moisture and root biomass. It can be estimated from eddy covariance 
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carbon and water flux data, or through sap-flow measurements (Dietze et al., 2014). Water 

conductance supplies additional controls on stomata opening and closing.  

Cuticular Conductance 

Cuticular conductance represents the movement of water across the plant cuticle, and is 

one of two main pathways of minimum leaf conductance (the other being movement through 

incompletely closed stomata) (Duursma et al., 2018).  Minimum leaf conductance is the rate of 

water loss a plant experiences when stomata are closed, but water loss continues at a diminished 

rate through the plant cuticle, the wax-like protective film covering the surface of leaves. Cuticular 

conductance plays an important role in the Ball-Berry model of stomatal conductance, and can be 

directly measured using leaf-level gas exchange techniques (Duursma et al., 2018).  

Root turnover rate  

Root turnover rate is the rate at which the continuous cycle of fine root growth and dieback 

proceeds. Fine roots serve as the interface between plants and soil, and play a crucial role in the 

cycling of carbon, water, and nutrients within a vegetated ecosystem. Root turnover rate constitutes 

a significant flux of carbon from aboveground biomass into soils, transitioning carbon into the 

belowground carbon cycle. Root turnover rate is primarily controlled by the amount of root litter 

present, which can be used to estimate root turnover, but there is currently no direct and reliable 

way to measure this parameter (Lukac et al., 2011).  

Vcmax 

Vcmax is the maximum rate of carboxylation, and serves as a measure of photosynthetic 

capacity (Wilson et al., 2000). ED2.2 employs the Farquhar photosynthesis model, an enzyme 

kinetic model of leaf photosynthesis, to mechanistically reflect plant physiological responses to 
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atmospheric CO2 levels (Walker et al., 2014). Vcmax is calculated from leaf level gas exchange 

measurements.   

Respiration temperature increase 

Respiration temperature increase is a parameter related to soil decomposition, and 

determines how quickly heterotrophic respiration will increase in response to increasing 

temperature (Ecosystem Demography Model 2.2 Wiki). Microbial decomposition of soil organic 

matter has been shown to increase with increases in temperature, but the rate at which it increases 

is important when simulating ecosystem response to temperature changes. This parameter is 

heavily influenced by soil moisture, as well as composition of microbial communities (Suseela et 

al., 2012). The observed correlation between soil respiration, temperature, and moisture is 

especially prominent in temperate ecosystems, where root processes and aboveground productivity 

are also closely linked to temperature and moisture levels (Ryan and Law, 2005). Respiration 

temperature increase can be measured using soil respiration chambers under laboratory or field 

conditions where temperature can be manipulated.  

Respiration optimal water 

Respiration optimal water is the optimal soil water content for heterotrophic respiration, as 

a fraction of the maximum possible available soil water. Heterotrophic respiration rates are 

strongly linked to soil moisture; decreases in water content below field capacity result in 

diminished microbial activity, and thus decreased CO2 efflux. The optimal water content for 

respiration is often found at intermediate levels, as soil water content can also exceed optimal 

conditions for soil respiration (Davidson et al., 2000). Respiration optimal water content is 
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determined using measurements of temperature, water content, and CO2 production for each soil 

horizon (Davidson et al., 2000).  

3.2 PDA Success 

PDA success was evaluated by PFT for each target parameter. PDA was deemed successful 

for a given parameter if MCMC chains were well mixed, the Gelman-Brooks-Rubin diagnostic 

statistic showed that variation between the three chains used was below the 1.1 threshold, 

correlation between parameters was low, and shrink factor values were shown to be stable over 

time. Both parameters related to soil biogeochemical process had a successful PDA process. 

MCMC chains were well mixed, marginal density plots were of a normal distribution, correlation 

between parameters was low (0.0067), and the diagnostic statistics were between 1.00-1.01, 

indicating a low degree of variance between MCMC chains. MCMC chains converged within the 

first 7,000 iterations and remained consistent throughout the remainder of MCMC with very little 

fluctuation in the shrink factor value. The sample size per chain was 19,460, slightly lower than 

the target of 25,000, likely due to fewer jumps being accepted when moving through the parameter 

distribution space.  

The majority of the parameters related to plant physiological processes resulted in a 

successful PDA process, with three exceptions. The parameter ‘water conductance’ was targeted 

for PDA in all five PFT’s, and MCMC chains failed to completely converge within the designated 

25,000 iterations in all five cases. Water conductance chains consistently had a narrower sampling 

value spread than the other parameters, although the overall chain patterns were consistent, 

indicating very little correlation between successive draws. Marginal density plots for water 

conductance weren’t multi-modal but they did display a right skew, suggesting the mean value is 

greater than the median. Water conductance displayed significant correlation to two other 
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parameters: ‘Vcmax’ for the PFT Late Conifer (correlation coefficient = -0.4728) and ‘cuticular 

conductance’ for the PFT Late Hardwood (correlation coefficient = 0.4811), shown in Figures 14 

and 15, although the correlation coefficients for both are below + 0.5, indicating a low enough 

correlation between variables that analysis didn’t require modification. Gelman-Rubin diagnostic 

values ranged between 1.33-2.18, suggesting a significant degree of variation between chains. The 

second exception was Vcmax, which didn’t converge for the PFT Late Conifer (diagnostic value = 

1.68), although convergence was successful for the remaining four PFT’s. The Gelman plot for 

Late Conifer Vcmax shows very little fluctuation in the shrink factor value after about 2,500 

iterations, but a high value (> 1.1) is consistently maintained over time (Figure 16). For all other 

PFT’s Vcmax chains were well mixed, and marginal density plots showed an approximately normal 

distribution with no sharp peaks or valleys. The final exception is for the parameter ‘cuticular 

conductance’, which is uniquely associated with PFT Late Hardwood. Cuticular conductance had 

a diagnostic value of 1.91. The significant physiological relationship between cuticular 

conductance and water conductance could explain the poor convergence for this parameter. The 

sample size per chain for all of the parameters related to plant physiological processes was 25,000.   
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Figure 14: Plot showing the degree of correlation between parameters targeted by PDA for PFT 

Late Conifer. Oval to round shaped point clouds indicate a lack of correlation, while tightly 

clustered point clouds appearing along a diagonal indicate linear correlations. Blue histograms 

are the marginal density plots for each parameter. The font size of correlation coefficients is in 

proportion to the degree of influence, where an empty white box or dashed line corresponds to a 

negligible correlation coefficient.   
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Figure 15: Plot showing the degree of correlation between parameters targeted by PDA for PFT 

Late Hardwood. Blue histograms are the marginal density plots for each parameter. The font size 

of correlation coefficients is in proportion to the degree of influence, where an empty white box or 

dashed line corresponds to a negligible correlation coefficient.   
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Figure 16: Gelman plot for parameter Vcmax of PFT Late Hardwood  

 

3.3 Parameter constraint through PDA 

Analysis of parameter constraint through PDA was assessed by PFT, although partial 

variances averaged across PFT’s are presented as well. This approach to characterizing changes in 

individual parameter contributions to overall model predictive uncertainty was used because 

partial variance values are percentages that represent the normalized uncertainty contributions 

from all flexible parameters within a given PFT, with the sum of all parameter partial variances 

for a given PFT equaling one hundred percent. As such, if a parameter is well constrained its 

individual contribution to the total variance decreases, but that removed uncertainty must shift 

elsewhere. In practice this means when a set of parameters are targeted for PDA, partial variances 

are reduced for the majority of targeted parameters as they are able to be constrained, but will 

actually increase for one or two of the targeted parameters that were not well constrained through 

PDA, which in essence ‘absorb’ the uncertainty from the well constrained parameters.  

Following PDA, growth respiration factor was the dominant parameter contributing to 

predictive uncertainty for three out of five vegetation PFT’s, with partial variances ranging 
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between 73.3% and 99.1% (Table 4). Uncertainty contributions from growth respiration factor 

were less significant for the remaining two vegetation PFT’s Late Hardwood and Northern Mid 

Hardwood, where partial variances were less than 3%. Water conductance was substantially 

constrained for all five vegetation PFT’s, with variance reduction rates all above 96.65%. Stomatal 

slope was successfully constrained for four out of five vegetation PFT’s (reductions ranging 7.64% 

to 79.12%), with the exception being North Mid Hardwood, where stomatal slope contributions to 

model predictive uncertainty increased from 0.56% to 7.3%. Root turnover rate uncertainty 

decreased for PFT’s Late Conifer and Northern Pine, but increases were observed for Early 

Hardwood, Late Hardwood, and North Mid Hardwood. PDA was not able to successfully constrain 

Vcmax, as increases in partial variance were seen for all PFT’s with the exception of Late Conifer, 

which showed a decrease of 67.6%. Of the two soil decomposition parameters targeted for PDA, 

respiration temperature increase and respiration optimal water, partial variance of respiration 

temperature increase dominated both before and after PDA. PDA shifted uncertainty from 

respiration optimal water to respiration temperature increase, which accounted for 99.5% of the 

soil PFT variance after PDA.  
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Figure 17: Vegetation parameter contributions to overall model predictive uncertainty. Both pre-

PDA and post-PDA values are averaged across the five different vegetation PFT’s used. 
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Figure 18: Distribution of partial variance of parameters targeted for PDA, separated by PFT. 

Partial variance is presented for both pre and post-PDA.  
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Table 4: Parameter contributions to model predictive uncertainty, sorted by parameter to display 

trends in partial variance shifts as a result of PDA.  

 

PFT Parameter Pre-PDA Post-PDA Percent Change 

Soil resp_temperature_increase 86 99.5 15.69767442 

Soil resp_opt_water 9.95 0.235 -97.63819095 

          

Early_Hardwood growth_resp_factor 82.8 99.1 19.68599034 

Late_Conifer growth_resp_factor 41 82.7 101.7073171 

Late_Hardwood growth_resp_factor 3.53 2.95 -16.4305949 

Northern_Pine growth_resp_factor 44.5 73.3 64.71910112 

North_Mid_Hardwood growth_resp_factor 0.714 2.8 292.1568627 

          

Early_Hardwood water_conductance 14.8 0.00293 -99.9802027 

Late_Conifer water_conductance 13.8 0.0105 -99.92391304 

Late_Hardwood water_conductance 6.99 0.00802 -99.88526466 

Northern_Pine water_conductance 9.34 0.0188 -99.7987152 

North_Mid_Hardwood water_conductance 87.1 2.92 -96.64753157 

          

Early_Hardwood stomatal_slope 1.37 0.286 -79.12408759 

Late_Conifer stomatal_slope 26.1 10.2 -60.91954023 

Late_Hardwood stomatal_slope 49.7 45.9 -7.645875252 

Northern_Pine stomatal_slope 39.8 19.1 -52.01005025 

North_Mid_Hardwood stomatal_slope 0.559 7.3 1205.903399 

          

Early_Hardwood root_turnover_rate 0.0202 0.0226 11.88118812 

Late_Conifer root_turnover_rate 0.00473 0.00157 -66.80761099 

Late_Hardwood root_turnover_rate 19.2 35.1 82.8125 

Northern_Pine root_turnover_rate 0.455 0.44 -3.296703297 

North_Mid_Hardwood root_turnover_rate 0.41 3.37 721.9512195 

          

Early_Hardwood Vcmax 0.00513 0.0236 360.0389864 

Late_Conifer Vcmax 17.5 5.67 -67.6 

Late_Hardwood Vcmax 0.0239 0.0486 103.3472803 

Northern_Pine Vcmax 0.00684 0.0271 296.1988304 

North_Mid_Hardwood Vcmax 1.15 14.5 1160.869565 

          

Late_Hardwood cuticular_conductance 20.4 15.4 -24.50980392 
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3.4 Model predictive uncertainty 

RMSE of model predicted NEE was calculated both before and after PDA using monthly 

averages, and was examined separately for both the entire year and the growing season. RMSE 

prior to PDA was 0.0303 kgC m-2 mo-1, compared to 0.0344 kgC m-2 mo-1 after PDA, indicating 

an increase of 13.74% in RMSE as a result of PDA. R2 calculated using RMSE for the model prior 

to PDA was 0.5136, meaning that 51.36% of the variation around the mean of NEE is explained 

by the model. Following PDA R2 decreased to 0.3707, suggesting the model’s ability to explain 

variance in predicted NEE decreased as a result of PDA. However, a time-series examination of 

the data shows that while overall model predictive ability may have decreased, changes in 

predicative ability varied by season.  
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Figure 19: Monthly smoothed plot of NEE 97.5% confidence interval spread before and 

after PDA, with observed average monthly flux values overlaid.  

 

Figure 19 depicts the seasonal variation in pre and post PDA narrowing of the confidence 

interval (CI) surrounding predicted NEE. The confidence interval can be thought of as the range 

of plausible values that are observed and captures the uncertainty in predictions, so ideally the CI 

spread would be narrowed through the application of PDA. It can be seen that during the growing 

season (defined as May 1-August 31) this is achieved, but during winter and fall the post-PDA CI 
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spread actually increases compared to the pre-PDA spread. This increase in spread is observed in 

the positive direction, indicating a predicted increase in the amount of carbon released by the 

ecosystem back into the atmosphere through enhanced respiration. There was no significant 

increase in predicted autotrophic respiration as a result of PDA (average difference = 8.10x10-10 

kgC m-2 s-1), but comparison of pre and post PDA estimates of soil respiration indicates that 

simulation of enhanced soil respiration during winter and fall is responsible for the increase in CI 

spread. As shown in Figure 20, model predicted soil respiration rates are relatively consistent pre 

and post PDA during the growing season (average difference = 5.92x10-11) but diverge 

substantially during winter and fall, with respiration rates increasing by up to 5.08x10-9 kgC m-2 

s-1.  

 

Figure 20: Comparison of pre and post PDA model predicted soil respiration rates, where 

values are averaged across ensembles of size 100.  
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During the growing season RMSE for monthly smoothed NEE predictions was 0.0501 kgC 

m-2 mo-1 prior to PDA and 0.0554 kgC m-2 mo-1 following PDA, an increase in error of 10.56% 

as a result of PDA, but 3.18% less than the increase observed when examining the full year at 

once.  

 

Figure 21: Comparison of root mean squared error (RMSE) for pre and post PDA, 

presented both over the course of a full year and within the growing season. 
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Figure 22: Model predicted versus observed plot for monthly smoothed values of NEE both 

pre and post PDA, closer proximity of datapoints to the blue 1:1 line indicates a higher degree of 

agreement between model predicted values and observational data.  

 

When examining ecosystem carbon dynamics, model predictions of cumulative NEE are 

of particular interest, as they describe whether an ecosystem is a carbon source or a carbon sink as 

well as the magnitude of that source or sink. Cumulative NEE calculated from ECF tower 

observations classifies the site as a net carbon sink, with an uptake of 0.2672 kgC yr-1. The model 

also classifies the site as a net carbon sink both pre-and-post PDA at the annual scale, but the sink 

magnitude differs slightly, with the pre-PDA model predicting an uptake of 0.2285 kgC yr-1 and 

the post-PDA model predicting an uptake of 0.2268 kgC yr-1, as shown in Figure 23. Thus, when 

examining cumulative NEE at the annual scale, there is very little difference in carbon sink 

magnitudes at the chosen study site before and after PDA.  

 Narrowing in on the growing season, a greater difference between post-and pre-PDA 

predictions of carbon sink magnitudes is observed. The calibrated model predicts a net carbon 

uptake by the ecosystem of 0.2648 kgC, compared to an uptake of 0.2399 kgC predicted before 

calibration, and an uptake of 0.301 kgC observed by the ECF tower. This disagreement between 

growing season and annual cumulative NEE is likely due to enhanced soil respiration predicted by 

the model during winter and fall, reducing the net CO2 uptake observed over the course of a full 

year.  
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Figure 23: Comparison of cumulative NEE for pre and post PDA, presented both over the 

course of a full year and within the growing season. The dotted black line represents the carbon 

sink magnitude calculated from observations.   

 

4. Discussion  

4.1 Parameter uncertainty 

Through sensitivity analysis and variance decomposition prior to the start of PDA, the 

flexible model parameters responsible for the greatest degree of model predictive uncertainty 

regarding NEE were identified. As NEE is frequently the variable used to describe the movement 

of carbon through an ecosystem, these isolated parameters can be thought of as the primary drivers 

of parameter uncertainty related to the terrestrial carbon cycle. Of the six plant physiological and 

two soil biogeochemical parameters chosen to target for PDA, all were related to either respiration 

(growth respiration, soil respiration temperature increase), water movement (water conductance, 

cuticular conductance, respiration optimal water content), or photosynthesis (stomatal slope, 
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Vcmax), with one parameter related to a turnover rate (root turnover rate). These influential 

parameters were consistent with what has been found in similar studies examining parameter 

uncertainty in complex models (Fer et al., 2018, Riccuito et al., 2018, Dietze et al., 2014). Fer et 

al. ran ED2.2 large ensemble simulations in a temperate northern hardwood forest as well (Bartlett 

Experimental Forest), and of the nine plant physiological and soil biogeochemical parameters 

targeted for PDA, five are consistent with parameters targeted in this study. Parameters related to 

respiration were found to be highly influential, with uncertainty related to soil respiration 

temperature increase dominating overall parameter uncertainty, and stomatal slope resulting in the 

largest degree of uncertainty in vegetation parameters. Ricciuto et al., 2018 demonstrated that 

although the same handful of parameters contributed significantly to NEE predictive uncertainty 

across multiple climate and vegetation types, patterns of sensitivity and uncertainty varied by PFT, 

a result which was observed in this study as well. However, several studies also highlighted 

mortality related parameters as contributing a large percentage of the collective parameter 

uncertainty, a result not observed in this study, although this too could be due to analysis only 

spanning a single year (Riccuito et al., 2018, Dietze et al., 2014).  

The error-space emulation-based PDA process first introduced in Fer et al., 2018 and 

replicated here was shown to be a viable option for the application of data assimilation to constrain 

a dynamic ecosystem model. Although increases in individual parameter contributions to 

uncertainty were observed for a few of the flexible parameters, overall, the approach utilized in 

this study successfully reduced individual parameter uncertainty. A lower degree of correlation 

was observed between flexible parameters than was initially anticipated, with the only significant 

correlation observed between water conductance and either Vcmax or cuticular conductance, with 

correlation coefficients of -0.47 and 0.48. As both water and cuticular conductance are key 
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parameters that tightly couple the water and carbon cycles, this result could be due in part to 

assimilating only with respect to the carbon cycle, as opposed to a dual assimilation approach 

incorporating both LE and NEE, as was done in Fer et al., 2018. For other flexible vegetation 

parameters correlation was on average below 0.1, and was 0.0067 for the two examined soil 

parameters. The consistently low degree of correlation between parameters indicates that 

parameters are well constrained and that equifinality is likely not a substantial concern (Keenan et 

al., 2013). This is an important finding considering equifinality, or getting the ‘right’ answers for 

the ‘wrong’ reasons is often noted as one of the cardinal sins of model calibration (Franks et al., 

1997).  

Looking specifically at vegetation parameters; water conductance, stomatal slope, and 

cuticular conductance were all well constrained through PDA, with the contribution of water 

conductance to model predictive uncertainty becoming insignificant (<1%) post-PDA. The 

importance of both stomatal slope and water conductance illustrate the tight coupling between the 

carbon and water cycles. The ability to constrain both of these parameters is substantial; sensitivity 

studies have highlighted them as primary targets for improving through PDA, as they are 

responsible for a significant portion of model predictive uncertainty across a range of landcover 

and climate types (Ricciuto et al., 2018, Dietze et al., 2014).  

In an ecosystem model such as ED2.2 where the carbon and water cycles are closely linked, 

quantifying the response of ecosystem carbon uptake to fluctuations in water availability through 

data assimilation could lead to more accurate predictions of changes in the carbon cycle in response 

to perturbation (Moore et al., 2008). The improvement is likely due to the importance of water 

related processes in modulating other terrestrial greenhouse gas fluxes (Raupach et al., 2005). 

Evapotranspiration and GPP (see equation 2) are closely linked by the processes that control their 
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magnitudes. For example, plants make constant tradeoffs between opening stomata for carbon 

uptake and losing water as a consequence, a process mediated by stomatal conductance, hydraulic 

properties of water uptake, and rate of carbon fixation. These properties are subsequently 

controlled by temperature, humidity, light availability, soil moisture, and CO2 and nitrogen 

concentrations. Additionally, the upper Midwestern United States is a patchwork of forests 

interspersed with numerous streams, lakes, and wetlands, with over 15,000 lakes and 84,000 miles 

of rivers and streams in Wisconsin alone (WDNR, 2009). In light of this unique landscape, water 

cycle processes likely have even more influence on carbon dynamics and spatial variation in the 

chosen study region.  

However, increases in parameter uncertainty were observed for three vegetation 

parameters: growth respiration factor, root turnover rate, and Vcmax. Increases in uncertainty were 

minimal for root turnover rate, and Vcmax, ranging between 0.3-3.5%, the vast majority of 

remaining uncertainty shifted to growth respiration factor, which experienced an average increase 

in predictive uncertainty across PFTs of 17.6%. So why did we observe such a substantial increase 

in uncertainty related to growth respiration factor, and is that finding unique to this study? In fact, 

growth respiration factor has been singled out as a highly uncertain carbon cycle parameter in a 

number of other modeling studies (Dietze et al., 2014), and has been described by Ricciuto et al., 

2018 as the parameter which “dominates the variability in carbon cycle variables”. Compared to 

the other flexible parameters targeted in this study, growth respiration factor is challenging to 

obtain direct measurements of, and existing priors are generally broad estimates that follow a 

uniform distribution. With the implementation of a Bayesian approach, the quality of priors, which 

are informed by measurements, dictate the success of PDA to some extent and broad uniform 

distributions are relatively uninformative (LeBauer et al., 2013). Considering the other targeted 
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parameters are well represented by observations, growth respiration factor essentially absorbs all 

of the residual variability in order to close the carbon budget. As stated in Dietze et al., 2014, 

reducing uncertainty related to this parameter is more than can be expected of PDA alone and 

hinges on improving additional direct constraints or using different model formulations to ensure 

biological realism.  

Narrowing in on parameters related to soil biogeochemical processes, only two parameters 

were shown to be influential, respiration optimal water and respiration temperature increase. 

Respiration optimal water was fully constrained through PDA, with remaining uncertainty shifting 

to respiration temperature increase. This parameter describes how quickly heterotrophic 

respiration increases in response to increased temperatures, and is highly influenced by soil 

moisture and microbial community composition. The increase in parameter uncertainty related to 

soil respiration is interesting, considering this is where we saw a large degree of divergence 

between pre- and post-PDA model predictions, with soil respiration rates significantly increasing 

during the fall and winter months following PDA.  

4.2 Seasonality in predicted NEE 

PDA was able to successfully constrain the confidence interval surrounding model NEE 

predictions during the growing season, but the same performance enhancement was not observed 

during winter and fall. The amplification of soil respiration following PDA is an interesting result, 

and could be attributed in part to a number of contributing factors, several of which will now be 

explored. Considering the large seasonal differences in carbon sink and source dynamics typically 

observed in a mid latitude terrestrial ecosystem (Desai et al., 2007), it’s likely that the model is 

overcompensating in favor of improved prediction alignment with observations during the growing 
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season, as most of the parameters targeted for PDA in this study are active primarily during the 

summer months.  

The post-PDA predicted NEE disagreed with observations predominantly with regard to 

soil respiration rates, predicting higher rates of respiration during the winter and fall months than 

what was observed. In order to understand this result, we need to critically evaluate not only the 

model predictions, but the observations they’re being compared against as well. The observations 

used in PDA as well as for the comparison of calibrated model predictions are obtained solely 

through an ECF tower, no direct soil respiration chamber data were used. Studies have shown that 

ECF towers systematically underestimate respiration rates compared to chamber-based 

measurements (Phillips et al., 2017). Often when comparing soil respiration (Rs) field data to total 

ecosystem respiration (Reco) calculated by ECF towers, it is found that Rs > Reco, a biological 

impossibility as Reco includes not only Rs but also aboveground autotrophic respiration such as 

stem and leaf respiration (Bolstad et al., 2004). This discrepancy is particularly influential in 

forests and is thought to emerge from difficulties in how Reco is calculated by ECF tower 

instrumentation (Phillips et al., 2017), highlighting potential biases in tower estimates of 

ecosystem respiration. Figure 24 shows that this is frequently the observed situation at Willow 

Creek, a research site in Northern Wisconsin located near the Park Falls WLEF tall tower site used 

in this study, with a similar landscape. 
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Figure 24: Comparison of ecosystem respiration (Reco) and soil respiration (Rs) at Willow Creek 

(lower left panel), an ECF tower equipped research site near the WLEF tall tower site used in this 

study, figure from Phillips et al., 2017.  

 

Perhaps the calibrated model is in fact overpredicting soil respiration rates, but with the 

assumed under-prediction of observed respiration rates, the magnitude of disagreement between 

the model and reality may not be as dramatic as it seems. It is worth noting that the two parameters 

that were not well constrained through PDA, growth respiration factor and respiration temperature 
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increase, are directly related to establishing ecosystem respiration rates. The incorporation of an 

additional soil respiration chamber data stream would likely further constrain the ecosystem 

respiration response and provide supplemental reductions of parameter contributions to 

uncertainty (MacBean et al., 2016, Phillips et al., 2017)). Viewing these results through a holistic 

lens, the calibrated model’s poor performance in predicting carbon sink magnitudes during the 

winter and fall may not be of high importance, as carbon fluctuations during the growing season 

are often orders of magnitude larger than during the winter and fall when plants are not 

photosynthesizing, and play a more dominant role in the determination of the overall ecosystem 

carbon budget. Running model simulations for multiple years would likely help ascertain if these 

observed seasonal variations persist over a longer timescale.  

5. Conclusions and Future Work  

This study demonstrated that the approach outlined by Fer et al., 2018 is a viable 

methodology for the application of PDA to constrain a dynamic ecosystem model. It was shown 

that the success of Bayesian PDA depends largely on the quality and abundance of observational 

data available to construct informative prior distributions for model parameters. Ecosystem 

respiration rates (predominantly soil respiration) represent the largest remaining parameter 

uncertainty, and are the most significant point of disagreement between the model predictions and 

observations. Overall model predictive error, assessed using RMSE, increased as a result of PDA. 

The increase in RMSE shows that although individual carbon cycle parameters were well 

constrained through PDA, additional observations need to be incorporated to constrain growth 

respiration factor, and hydrological cycle dynamics should be integrated to see which other 

parameters might be highly influential for water cycle processes and potentially coupled with 

carbon cycle processes that were overlooked in this study. Examining the influence of closely 
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related hydrological parameters could illuminate whether carbon cycle parameters were optimized 

at the expense of influential hydrological parameters, resulting in lower overall model predictive 

power.  

The reallocation of remaining uncertainty to parameters driving ecosystem respiration rates 

poses the question of whether poor constraint of respiration is responsible for the decrease in model 

predictive ability following PDA. Incorporating soil respiration chamber data as an additional 

observational constraint would likely improve model parameters related to respiration, which 

could then refine predictions of carbon dynamics (Phillips et al., 2017), as NEE has been shown 

to be particularly sensitive to how respiration is parameterized (Fox et al., 2009).  The large spike 

in model predicted respiration during the winter and fall months observed in this study was not 

commonly seen in other similar studies where PDA was constrained with soil respiration data in 

addition to ECF tower observations (Fer et al., 2018). Completion of multi-year model simulations 

would help discern whether this is a persistent seasonal trend or an abnormality observed in this 

single study year. Additionally, other studies have indicated that optimizing ED2.2 parameters 

results in substantial improvements in the model’s ability to predict seasonal and long-term 

patterns of CO2 uptake (Medvigy et al., 2007).  

Building upon the improvements mentioned above, future work also includes running the 

calibrated model with ECF tower data not used in the calibration process. The true test of model 

performance following PDA is to determine how well the model performs with independent data 

sets (Richardson et al., 2010). Fortunately, there is an abundance of ECF data within the same 

study region available through the Chequamegon Heterogenous Ecosystem Energy-balance Study 

Enabled by a High-density Extensive Array of Detectors (CHEESEHEAD) intensive field 

campaign. CHEESEHEAD was launched summer 2019 in Northern Wisconsin centered around 
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the WLEF tall tower utilized in this study. During the CHEESEHEAD project one of the world’s 

highest density networks of ECF towers were deployed for four months spanning summer to fall 

to examine how the atmospheric boundary layer responds to spatial heterogeneity in surface energy 

fluxes (Butterworth et al., 2020). Seventeen stand-level ECF towers were deployed within a 10X10 

km domain, in addition to two pre-existing stand-level towers and the WLEF tall tower, for a total 

of twenty ECF towers in the study domain, with tower sites varying in vegetation type as well as 

management history. Utilizing these rich datasets with flux data from the same study location 

experiencing the same climate forcing will allow for a true test of optimal model performance, and 

further exploration of the growing season trends observed in this study.  
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