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Abstract

A Singular Vector ensemble prediction system using the WRF model

by Karimar Ledesma Maldonado

Uncertainties in both the initial conditions of a numerical weather prediction (NWP)

model forecast and in the representation of the model dynamics evolve to contribute to

forecast uncertainties. Because of these uncertainties, the day-to-day predictability of

future atmospheric states remains a challenge. An ensemble of deterministic NWP model

forecasts can be used to ascertain that predictability by providing information on the

probability density function (PDF) of those future states or, at the least, the first two

moments of the forecast state PDF, the forecast mean and the variance. In this project,

singular vectors (SVs) are used to seed an ensemble forecast system. Singular vectors

identify the initial locations and structures of growing perturbations that can contribute

to ensemble spread and associated forecast uncertainty. This study evaluates a singu-

lar vector-based, Weather Research and Forecasting model (WRF) ensemble predictions

system for short-range forecasting. This technique was tested for a given time interval

(the optimization time) using a dry energy norm to identify a set of rapidly growing

perturbations to a control forecast trajectory ordered by the growth rate, with the most

rapidly growing SV called the “leading” SV. Further, a local projection operator (LPO)

is employed to constrain optimization of perturbations over a selected area to compare

with SVs estimated over the entire domain. Although results are case-dependent, both
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experiments demonstrate a robust forecast spread for wintertime, mid-latitude weather

systems.
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Chapter 1

Introduction

The chaotic nature of the Earth system makes it challenging to predict future states of the

system. Because numerical weather prediction models only approximate atmosphere dy-

namics and physical processes, there are uncertainties in numerical weather forecasts. In

addition, initial condition uncertainties and errors can lead to lower predictability. These

initial uncertainties and possible errors may be caused by the insufficiency of observations

(or poor assimilation of the observations) in capturing important small-scale atmospheric

features (Stensrud et al. (1999)) and affect predictability even for short-range forecasts

(Lorenz (1963)). Model inaccuracies are likely to exist also, even as model grid spacing

decreases (Heideman and Michael Fritsch (1988)). Hence, model and initial conditions

uncertainties are not separable. Furthermore, the uncertainties and errors of a numerical

weather forecast are flow dependent - they vary with each forecast cycle. Thus it is desir-

able to have some measure of forecast uncertainty with each deterministic forecast. The
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only feasible technique to obtain estimates of forecast uncertainties (or the probability

density function p.d.f. of those uncertainties) are Monte-Carlo techniques that sample the

p.d.f. at initial time and evolve the sampled initial states with the forecast model — or a

perturbed version of the forecast model to account for model uncertainty (Leutbecher and

Palmer (2008)). The sample is referred to as an ensemble with the individual elements

called the ensemble members. An ensemble forecast may be created from combinations

of differing model physics or dynamical cores and/or sampling of the initial state with

perturbed initial conditions. This study focuses on the latter.

Figure 1.1 shows a schematic of an initial condition ensemble. The control forecast

trajectory is indicated by the line connected by the two bold dots, while ensemble members

start from the cloud of +’s surrounding the control initial condition at t = 0. This cloud

of +’s represents the initial uncertainty. The forecast model maps the initial states to

the final states. The initial (circular) cloud of uncertainty is ultimately mapped into an

ellipse of uncertainty - demonstrating that some uncertainties may grow, while others

decay. The strategy of choosing effective perturbations is central to a useful ensemble.

Many methods have been developed to construct initial perturbations to create an en-

semble prediction system, including the breeding vector (BV), singular vector (SV), and

ensemble Kalman filter approaches. The breeding vector (BV) approach obtains the

growing dynamical instabilities of the analysis error (Toth and Kalnay (1993)). This

technique is closely related to the Lyapunov vectors of a dynamical system (Kalnay et al.

(2002)). The improved version of BV applies the Ensemble Transform (ET) technique
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Figure 1.1: A schematic of an initial condition-based ensemble. The black dot repre-
sent the control initial conditions and +, the perturb initial conditions. At initial time
(t=0), the control and perturb initial conditions are slightly different starting conditions
and after a short therm evolution (t= ) the blue solid and dashed lines representing the
control and perturb forecast, the envelope of perturbations deforms into an ellipse.

(Wei et al. (2008)). The Ensemble Transform breed vectors (ETBV) create globally or-

thogonal initial perturbations and is currently used to initialize the National Centers of

Environmental Prediction (NCEP) global ensemble. Yet another technique is the singular

vector (SV) method to identify the most rapidly growing perturbations over a prescribed

optimization time interval (Lorenz (1965); Palmer (1993); Buizza et al. (1993); Molteni

et al. (1996)). Forecast centers that use this technique to initialize ensemble forecasts

include the European Centre for Medium-Range Weather Forecasts (ECMWF), Japan

Meteorological Agency (JMA), Météo-France, and Bureau of Meteorology (BoM) in Aus-

tralia. Another approach involves the use of the ensemble Kalman filter (Houtekamer

et al. (1996), Houtekamer et al. (2005)); this technique uses an approximation of the

Kalman filter equations. Observations are perturbed to generate a statistical sample

of analyses. This approach is employed at the Meteorological Service of Canada and
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Hungarian Meteorological Service. Another common approach to construct initial per-

turbations is the ensemble transform Kalman filter, in which perturbations are generated

based on sampling the analysis uncertainties (Wei et al. (2006)). Previous studies have

compared these different initial perturbation methods using different simplified models

such as Lorenz, and atmospheric NWP models. (Anderson (1997); Trevisan and Leg-

nani (1995); Houtekamer and Derome (1995); Trevisan et al. 2001; Wei and Frederiksen

(2004); Bowler (2006); Wei et al. (2006); Descamps and Talagrand (2007); Yang et al.

(2015); Zhou et al. (2016)). The SV technique has been often used for global ensembles

such as that ECMWF system (Palmer et al. (1998a), Leutbecher (2005)). This study

focuses on applying the SV technique to create an ensemble prediction system using a

high-resolution regional model, which differs from prior work with SVs that is almost

exclusively in lower-resolution global models.

1.1 Singular Vectors technique

SVs were first introduced by Lorenz (1965) in his attempt to determine the forecast error

growth in a dynamic system and developed later by Lacarra and Talagrand (1988). SVs

can be determined by solving an eigenvalue problem in which the solution provides a set

of orthogonal eigenvectors. For a dynamical system, SVs describe a set of initial condi-

tion perturbations which amplify most rapidly over a prescribed time interval subject to

the constraint of an initial time amplitude. Singular vectors can be used to construct an

orthogonal hierarchy of most rapidly growing perturbations. The evolved leading SV will

provide the direction in the phase space with a maximum growth (or amplification) that
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produces the most extensive forecast spread. Hence, SVs aid in identifying the direction

of initial uncertainty that produces the most significant forecast and model uncertainty.

Since the optimization problem reduces to an eigenvalue problem, the Lanczos algorithm

is an effective tool to compute the leading SV’s with the desired accuracy (Parlett (1980)).

This routine is coupled to the forward and adjoint linear models, then by a series of it-

erations, the largest eigenvalues and corresponding eigenvectors are found. Although it

simplified to a linear problem, previous studies (Errico et al. (1993); Buizza and Palmer

(1995), Errico and Raeder (1999); Hersbach (2000); Beare et al. (2003)) have shown that

it still captures the dynamical evolution of fast-growing structures. To capture the dy-

namically most unstable perturbations it is necessary to define a norm at both initial

and final times. The structure of SVs depends not only on the norm selected over a

finite interval of time but also on how it is designed to focus on a particular forecast as-

pect. A complete discussion about the application of the norm is presented in section 2.

Numerous studies have applied this technique to study the predictability of atmospheric

flows by estimating the growth of forecast errors and creating ensemble weather predic-

tion (Lorenz (1965); Palmer et al. (1994); Ehrendorfer and Tribbia (1997); Gelaro et al.

(1998);Hakim (2000); Descamps et al. (2007)), the instability properties of atmospheric

and oceanic flows by providing normal modes (Farrell (1982); Farrell (1989)) and last to

target observations to determine the regions that are dynamically sensitive to enhance

initial conditions for model forecasting (Palmer et al. (1998b)). To advance the under-

standing of weather predictions and research application into operations, the feasibility

of the Singular Vectors (SVs) technique to the Weather Research and Forecasting (WRF)
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model to create initial condition perturbations for short-range range ensemble weather

predictions is evaluated. The WRF model is a mesoscale numerical weather prediction

(NWP) and atmospheric simulation system designed for both atmospheric research and

operational forecasting applications (Skamarock et al. (2008)) to address the needs and

close ties between those communities.

1.2 Objectives

The objectives of this work are the development of a SV solver using the WRF model,

application of this solver to create an SV-based ensemble prediction system for the eval-

uation of flow-dependent forecast uncertainty, and development of post-processing tools

to reveal measures of forecast uncertainty.
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Chapter 2

Mathematical formulation of

Singular Vector

In this section, we discuss in detail the mathematical foundations of SVs. The discussion

is a synthesis of explanations found in Lacarra and Talagrand (1988), Buizza et al. (1993),

Molteni and Palmer (1993), Kalnay (2003) and Leutbecher (2007).

A nonlinear model approximates the dynamics of the Earth’s atmosphere by solving the

system of nonlinear equations that govern the atmospheric flow. This nonlinear model

(M) predicts future atmospheric states represented as a one-dimensional column vector,

X, called the ”state vector.” The state vector is composed of all the dependent forecast

variables carried by the model such as temperature, wind, water vapor, and pressure.

The time evolution of the state vector can be expressed as:
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dX

dt
= F (X) ,X =



X1

.

.

.

Xn


, F =



F1

.

.

.

Fn


(1)

where X ∈ RN denotes an N-dimensional model state vector and F ∈ RN denotes the

N-dimensional representation of the model dynamical and the physical processes. The

solution to Eq (1) X(t), describes the NWP model which maps the state vector at the

initial time X(t0) to the state vector at some future forecast time, t: X(t):

M : RN → RN

X(t0) → X(t)

(2)

X(t) = M(X(t0)) (3)

The growth of small perturbations, x , of a numerical weather prediction model is approx-

imated by solving a set of linear equations that govern the dynamics of the atmosphere

obtained through a first-order Taylor expansion of the nonlinear model Eq (4) in where for

short-time periods, the term O(x2(t))can be neglected. This system of linear equations
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describe the dynamical evolution of perturbations linearized about a basic state control

trajectory that is the output of (3).

d

dt
(X(t) + x(t)) = F(X(t) + x(t)) = F (X(t)) +

∂F

∂X

∣∣∣∣
x(t)

x(t) +O(x2(t)) (4)

The Eq (5) is the result of the subtraction of Eq (4) from Eq (1) and retaining the leading

term. Equation (5) is the linearized model equation with Eq (6) the linearization of Eq

(3) lead to defining the tangent linear model equation in Eq (7).

dx

dt
=

∂F

∂X

∣∣∣∣
X(t)

x = AFx (5)

where AF is the Jacobian of F : (AF)jk =
∂Fj

∂Xk
a

x(t) =
∂M

∂X

∣∣∣∣
X(t)

x(t0) = L(t0, t)x(t0) (6)

where L(t0, t) =
∂M
∂X

∣∣
X(t)

x′(t) = L(t0, t)x
′(t0) (7)

First, the input to the tangent linear model L is the perturbation at initial time x
′
(t0).

Note that the L(t, t0) operator integration depends on the nonlinear trajectory to provide

the evolved perturbation x
′
(t) from an initial perturbation x

′
(t0).
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To find those perturbations that have maximized the growth over a finite interval of time,

we proceed to find the SV of the operator L which are the eigenvectors of LTL .

LLTui = σ2
i ui

(8)

LTLvi = σ2
i vi (9)

where LT the transpose of L is the adjoint. Then, the eigenvectors of LTL are the left

(u1, u2, u3...un) and right (v1, v2, v3...vn) singular vectors of L and the eigenvalues of LTL

are the squares of the singular values (σ2
1, σ

2
2, σ

2
3...σ

2
n) of L. The singular values represent

the major axes of the ellipse, which point in the direction of maximum perturbation

growth over a short period of time, τ (Figure 1.1).

The matrix representation of L and LT corresponds to the tangent linear model and the

adjoint model, respectively. Both are used to compute the directions at initial time that

evolve into the leading eigenvectors. The input variables for the adjoint model are the

initial value of the trajectory x
′
(t0)and the adjoint perturbation at final time.

Note that the dimension of this state vector X is so large that it would be impractical

to be store the propagator in matrix form. As a consequence, the coded tangent linear

model and the adjoint model are used to identify the leading singular vectors via an

iterative solution of an eigenvalue problem. The Lanczos algorithm iteration involves
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an integration of the tangent-linear model and integration of the adjoint model over the

optimization interval to reveal the SV and find the next largest SV.

The magnitude of the intial and final time perturbation require specification of a norm,

E. In this study, the norm selected is energy and is discussed in detail in the next section.

We shall refer to ∥ • ∥E as the E-norm, where the norms E is Hermitian positive definite

at the initial and final time respectively.

∥x′∥2E = ⟨x,Ex⟩ = xEx (10)

The perturbation with the norm at the initial time is E0

∥x′
0∥2E0

= ⟨x′
0,E0x

′
0⟩ = x

′T
0 E0x

′
0

(11)

The magnitude of the evolved perturbation with the norm Et is defined as:

∥x′
t∥2Et

= ⟨x′
t,Etx

′
t⟩ = x

′T
t Etx

′
t

(12)

where Et = ET
t . The amplification factor, σ, is defined as the ratio of the norm at the

final time to the norm at the initial time:

σ2 =
⟨x′

t,Etx
′
t ⟩

⟨x′
0,E0x′

0 ⟩
=

⟨Lx′
0,EtLx

′
0 ⟩

⟨x′
0,E0 x′

0⟩
=

⟨LT EtLx
′
0, x

′
0⟩

⟨x′
0,Ex

′
0 ⟩

(13)

The initial perturbation that maximizes this ratio in an interval of time is considered the
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fastest growing perturbation and is subject to the constrains that the initial amplitude

is one, to satisfy the eigenvalue problem.

ϑ(x′
0) = ⟨LTEtLx

′
0, x

′
0⟩ − σ2(⟨Ex′

0, x
′
0⟩ − 1) (14)

To maximize the growth of a chosen norm over a finite time interval (t− to), the solution

simplifies to a generalized eigenvalue problem:

∂ϑ

∂x
′
0

= LTEtLx
′

0 − σ2E0x
′

0 = 0 (15)

LTEtLx
′
0 = σ2E0x

′
0 = LTE

1/2
t E

1/2
t Lx

′
0 = σ2E0x

′ (16)

When different norms are used at the initial and final times then Eq (17) is used (an

equivalent expression to the Eq (8)). The eigenvectors of LTL and the initial singular

vectors of L which are the perturbations with maximized amplification factor in the finite

interval of time.

(
E
−1/2
0 LTE

1/2
t

)(
E
1/2
t LE

−1/2
0

)
vi(t0) = σ2

i vi(t0) (17)

The initial-time SVs form an E0-orthonormal basis in which the lead SVs correspond to

the fastest growing structure. Note that the SV calculation requires the TLM (L) and
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the adjoint of the TLM, LT. The solution forms orthogonal sets of vectors at the initial

time and at the final time. The eigenvalues are real given the symmetry of the problem:

LTEtLx
′
0 = σ2E0x

′
0

(18)

2.1 Requirements to compute Singular Vectors

Singular vector features are dependent on the selection of the norm, local projector op-

erator (LPO), and optimization time interval (OTI) (Gelaro et al. (1998)).

a. Defined Norm

The calculation of SVs depends on the norm selected. While a norm representing the

analysis uncertainty would be desirable, calculation of a flow dependent analysis error

covariance is costly and memory requirements to store it, prohibitive. Previous studies

have shown that the total dry energy is an appropriate metric for computing SVs for

the predictability problem (Palmer et al. (1998b), Molteni et al. (1996)) as it is a first

order approximation to the analysis error covariance matrix metric. The dry total energy

is used in this study since previous results have shown that moist total energy is very

similar to dry total energy norm (Kim and Jung (2009)). This total dry energy norm is

defined as:

ε =
∫
σ

∫
x

∫
y

{
(u′2 + v′2 )

2
+

1

2

cp
θr
θ′2 +

θrR

2

(
p′

pr

)2
}(

∂p

∂σ

)
dxdydσ (19)
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where the primes denote the perturbations quantities u′,v′,θ′,p′for the model state vector

comprising horizontal winds, potential temperature and surface pressure. The constant

R is the gas constant for dry air,cp is the specific heat for dry air at constant pressure

(=1006 JK−1kg−1),θr is a reference temperature (=300 K) and pris a reference value

for pressure (=1000 hPa). The first term on the right-hand side represents the kinetic

energy, the second term the available potential energy and the third term surface pressure

component.

b. Optimization time interval (OTI)

The optimization time interval (OTI) is an interval of time over which the initial per-

turbations maximize their growth. Komori and Kadowaki, 2010 examined the sensitivity

of SV to different OTIs where they found that mid-latitudes structures need longer OTI

to develop contrary to smaller-scale which develops faster, that require shorter OTI. In

this study, the optimization growth is τ = 24 hours and it is assumed that uncertainties

continue growing beyond that time.

c. The Local Projector Operator (LPO)

A local projection operator (LPO) is used to constrain the geographical region in which

SVs are computed (Buizza and Palmer (1995)). Practically it focuses the region in which

evolved perturbation amplitude is calculated while allowing the user to focus on weather

systems of interest. The LPO sets the state vector to have zero values on grid points

outside the region of interest and maximizes the energy of the singular vector at the final
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time in the specified local region Figure 2.1. Therefore, perturbations chosen to grow in

a specific geographical domain can be computed by applying LPO after the linear inte-

gration. Therefore, the generalized eigenvalue problem is defined as:

(
E
−1/2
0 LTPTE

1/2
t

)(
E
1/2
t PLE

−1/2
0

)
vi(t0) = σ2

i vi(t0) (20)

whereP is the projection operator andPT is its adjoint. Note that the LPO is self-adjoint,

i.e., P = PT.

Figure 2.1: Representation of LPO in the model domain. LPO (black) grid points
outside the region of interest (gray).
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Chapter 3

Model, Data and Methodology

3.1 Weather Research Forecasting model

The Weather Research Forecasting (WRF) model is a nonlinear, non-hydrostatic, full-

physics numerical weather prediction (NWP) model (Skamarock et al. (2008)) developed

by the National Center for Atmospheric Research (NCAR), National Weather Service

(NWS), and the academic community. In this study, WRF version 3.8.1 is used. This

model has been widely used for a broad range of cases studies of extratropical and tropical

weather systems. (Powers et al. (2017)).

3.2 Data and experimental design

The SVs are computed by solving an eigenvalue problem defined by the product of the

tangent forward and adjoint operators and the dry total energy metric described in the
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previous section. In this study, the initial and boundary conditions of the WRF simu-

lations are taken from the Global Forecast System (GFS) analysis and forecast with a

.25 degree resolution from the National Centers for Environmental Prediction (NCEP).

Six-hourly analyses and their 3-h short term forecasts are used to provide the initial

conditions and boundary condition updates for this study.

Previous studies have shown that SVs integrated with simplified physics in the linear

model tend to survive the integration of the nonlinear dynamics and contribute to more

considerable perturbation growth (Kim and Jung (2009), Barkmeijer and Palmer (1999)).

Hence, the WRF TLM and adjoint model contain the moist physics scheme Thompson in

this study. The nonlinear trajectory for the SV calculation is provided by a full-physics

nonlinear integration of the forward model.

3.3 Construction of initial perturbations from SVs

(Post Processing WRF SVs)

The SVs are used to construct the ensemble system by adding to and subtracting the

initial conditions perturbations of u
′
, v

′
, θ

′
, µ

′
from the control forecast, and nonlinear

integration is performed with the same initial time and a parent domain. Hence, the

initial perturbations generated using the SVs are scaled as is shown in eq (21) and eq

(22) to have the perturbation amplitude comparable to analysis error variance.

x+0 = xctl0 + v
′
nα

σ2
1

σ2
n

(21)
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x−0 = xctl0 − v
′
nα

σ2
1

σ2
n

(22)

Where x+0 (x−0 ) is the positive (negative) perturbation, xctl0 is the control forecast, v′n is

the perturbation, σ2
n is the nth evolved SV and α an appropriate arbitrary scaling factor

(= 50).

This approach allows us to show the range of possible outcomes and create the probability

forecast for an event for a forecast variable such as temperature, wind, and precipitation.

Therefore, the analysis for all experiments comprise 2N+1 forecasts where one is the

unperturbed member (the control forecast) and the other 2N are the perturbed analyses

(Figure 3.1).

Figure 3.1: WRF domain setup for the entire domain (black) for EXP1 and LPO
centered over the area of interest (blue) for EXP2.
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Chapter 4

Synoptic Overview: Extratropical

cyclone 4-5 December 2020

In order to evaluate the SV technique to identify forecast uncertainties we apply the

technique to an east coast cyclogenesis event. The case chosen occur during the period

4-5 December 2020. The data used are the six-hourly NCEP GFS final analyses.

The synoptic overview begins at 1200 UTC on 4 December. Figure 4.1 displays the

evolution of the 250 hPa geopotential height, wind, and isotachs. At 1200 UTC on

4 December (Figure 4.1a), a positively tilted shortwave trough, the precursor to the

cyclogenesis event, is located over Missouri. A strong, 100 kt jet streak extends from

northern Mexico to the southeast US coast to its south. The trough progresses eastward,
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gradually becoming neutrally and then negatively tilted as it nears the east coast on 0600

UTC 5 December (Figure 4.1d).

In the mid-troposphere, a similar progression of events is seen (Figure 4.2) as the 500 hPa

relative vorticity maximum associated with the short wave moves eastward and becomes

more compact - a condition favorable for development at the surface. Concomitant with

the relative vorticity amplifying are the 500 hPa geopotential height falls noted from

1800 UTC 4 December through 0000 UTC 5 December (Figure 4.2 b and c). As the

shortwave energy moves through the slower moving, longer wavelength trough, its tilt

shifts from positive to neutral (north-south) orientation on 0000 UTC 5 December 0000

UTC (Figure 4.2c) to a negative orientation (Figure 4.2e) by 1200 UTC on 5 December.

This negatively-tilted trough observed at 1200 UTC on 5 December is associated with

more substantial divergence, which would support stronger surface cyclogenesis.

Figure 4.3, shows the evolution of the 700 hPa geopotential height, temperature, and

wind. The 700 hPa shortwave trough initially over Missouri (Figure 4.3a) moves eastward

and becomes less positively tilted during the first 6 hours of the forecast (Figure 4.3b).

The trough subsequently deepens and becomes negatively tilted as it approaches the

East Coast (Figure 4.3 c, d, and e). As the 700 hPa short waves move eastward, a

surface cyclone develops in the southeastern US (Figure 4.4c) and deepens as it moves

northeastward. As low pressure occludes over the Appalachians, and eastern Great Lakes,

southerly flow advects warm and moist air to the east coast, followed by a cold advection
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on 5 December (Figure 4.2c) is observed moving over the Mid-Atlantic northward into

the New England.

The evolution of the mean sea level pressure and 1000-to-500 hPa thickness (Figure 4.4)

can discern the rapid development of this extratropical cyclone. At 1200 UTC on 4 De-

cember, could diagnose a broadly confluent, near-surface geostrophic wind field. The axis

of dilatation of this confluent flow was oriented from southeast Louisiana to southern New

England (Figure 4.4a). Over time, the near-surface temperature gradient intensified along

the dilatation axis as a surface front developed (Figure 4.4 b and c). A surface cyclone

formed along the front and progressed northeastward from the Carolinas (Figure 4.4c) to

the mid-Atlantic coast by 1200 UTC on 5 December (Figure 4.4e). The cyclone began to

deepen rapidly on 5 December at 0000 UTC, where the central pressure decreased by 24

hPa, in 12 hrs observed in Figure 4.4d and e.
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Figure 4.1: 250-hPa geopotential heights 1050m ±12 (green contours), temperature
(red contours, interval 4C), wind barbs (kt), and wind speed (kt, shaded), (a)-(e) valid

from 1200 UTC 4 December 2020 1200 UTC to 5 December 2020.
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Figure 4.2: 500-hPa geopotential heights 540m ±6 (green contours), temperature (red
contours, interval 4◦C), wind barbs(kt), and absolute vorticity (x 10-4 s-1, shaded), (a)-
(e) valid from 1200 UTC 4 December 2020 to 1200 UTC 5 December 2020 1200UTC.
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Figure 4.3: 700-hPa geopotential heights 300m ±3 (m, contour line), temperature
(K, fill) and wind barbs (kt), (a)-(e), valid from 1200 UTC 4 December 2020 to 1200

UTC 5 December 2020.
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Figure 4.4: Mean sea level pressure (hPa, contour lines) and 1000-to-500 hPa thickness
(dam, green contours), (a)-(e) valid from 4 December 2020 1200 UTC to 5 December

2020 1200UTC.
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Chapter 5

Results and Discussion

In order to test the WRF SV system and the impact of the LPO on SV calculation, two

sets of experiments were performed on the extratropical cyclone case described in the

preceding chapter: (1) calculation of SVs over the entire domain (EXP1) and (2) another

making use of an LPO situated over the development of the east coast storm (EXP2; see

Figure 5.1). Table 5.1 summarizes the set of experiments. The SVs were calculated to

maximize the 24h tropospheric total perturbation energy over the entire model domain

(EXP1) and within the selected region identified by the LPO (EXP2).

Experiment Description
EXP1 SV computed over the entire domain.
EXP2 computed with the LPO centered over the area of interest.

Table 5.1: Two sets of experiments. The integration and optimization time for all
the experiments are 24 h.
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Figure 5.1: WRF domain setup for the entire domain (black) for EXP1 and LPO
centered over the area of interest (blue) for EXP2.

All simulations were conducted on a 90 km, 78 x 48 grid with 41 evenly spaced vertical

levels. The 24h numerical forecast for the control case was initialized at 1200 UTC 4

December 2020.

Figure 5.2 shows the distribution of the squares of the singular values retrieved following

100 iterations of the Lanczos algorithm for both experiments. For EXP1, 24 singular

values were obtained, while for EXP2, 31 were retrieved. Recall that the squares of these

values represent the ratio of the final time perturbation energy with a chosen domain

(specified by an LPO) to initial time perturbation energy. Hence, the application of the

local projection operator on EXP2 leads to smaller singular values compared with EXP1.
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Figure 5.2: Singular values retrieved for EXP1 (left) and EXP2 (right).

5.1 Total energy vertical profile

The vertical profiles of the total perturbation energy for the first 10 (leading SVs) from

EXP1 are displayed at the initial time (Figure 5.3a) and at the 24h optimization time

(Figure 5.3b). Figure 5.4 shows the results for EXP2. Recall that the SV initial time

total perturbation energy has been normalized to 1. The initial time SVs have the total

perturbation energy maximized nearest the surface in both experiments. A secondary

maximum is located in the model upper troposphere (particularly for SV1, SV9, and

SV10 for EXP1 and SV6, SV7, SV9, and SV10 for EXP2). The evolved (final time)

SVs experience an increase in energy at all levels, suggesting that at the initial time, the

energy of SV is in the form of potential energy and that kinetic energy dominates the

potential energy by the final time, as is shown in previous studies (Montani and Thorpe

(2002)). Note that the surface-pressure term represents only a small portion of the total
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energy.
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Figure 5.3: Energy vertical profile at the (a) initial and (b) final time for EXP1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Total energy [J/m2] 1e 1

1000
900
800
700
600
500
400

300

200

100

Pr
es

su
re

 (
hP

a)

Initial Time: 2020-12-04 12:00:00

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)
SV1
SV2
SV3
SV4
SV5
SV6
SV7
SV8
SV9
SV10

0 1 2 3 4 5 6 7 8
Total energy [J/m2]

1000
900
800
700
600
500
400

300

200

100

Pr
es

su
re

 (
hP

a)

Final time: 2020-12-05 12:00:00

(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)
SV1
SV2
SV3
SV4
SV5
SV6
SV7
SV8
SV9
SV10

Figure 5.4: Energy vertical profile at the (a) initial and (b) final time for EXP2.
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5.2 SV structure

A description of the initial and final structure of leading SVs for both experiments is

presented in this section. The TLM is used to integrate the initial leading SV forward

24h. For the dry energy norm used here, the initial perturbation maximizes perturbation

kinetic energy and available potential energy at the OTI.

The 500 hPa temperature perturbations associated with the leading SV exhibit a chevron-

like pattern along the axis of the southwesterly jet is extending from northern Mexico

into the southeast US (Figure 5.5a, Figure 5.11a). For EXP 1 (Figure 5.5a) the initial

SV is maximized (at 500 hPa) over Texas and the western Gulf coast - well upstream of

the final time cyclone position(Figure 5.5b). This structure is consistent with growing

SVs having a horizontal tilt against the barotropic shear. In the 24 hr forecast, the

perturbation grows in amplitude and broadens spatially (see Figure 5.5b, Figure 5.11b).

While similar results were observed in EXP2 (Figure 5.11), the impact of the LPO on

perturbation fields of EXP2 is evident, where the perturbation growth is restricted to the

domain of the LPO. For example, the perturbation growth in the cut-off low over west

Texas seen in (Figure 5.5)b is missing in the perturbation growth from (Figure 5.11)b.

An along the thermal wind shear vertical cross-section for θ, u, v is shown in Fig-

ure 5.7, Figure 5.8, Figure 5.9 respectively. The structure for the θ, u, v perturbations

at the initial and final time illustrates an increase in amplitude and horizontal and vertical

length scales as well as a change in tilt relative to the shear. For the variables analyzed,
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at the initial time, the vertical upshear tilt (i.e., against the shear) is observed. The

variables have maximum amplitude in the lower to middle troposphere as observed in

prior idealized and real-world studies (Mukougawa and Ikeda (1994); Buizza and Palmer

(1995); Hartmann et al. (1995); Hoskins et al. (2000)). There is also a wave train near the

surface, which is evident in temperature and zonal and meridional winds. The horizontal

temperature gradient (e.g.,Figure 4.2a) associated with the vertical shear of the mean flow

is the source of the available potential energy for growth. This westward tilt of the pertur-

bations with height also implies that the horizontal temperature advection will increase

the available potential energy, suggesting that vertical motion will convert perturbations

of available potential energy to perturbations of kinetic energy experiencing transient

growth. Badger and Hoskins (2000) showed that an up-shear tilted vertical structure

contributes to kinetic energy growth and amplification of mid-latitude synoptic systems

in baroclinically sheared flows. The increase in energy was also observed in the previous

section 5.1. The positive correlation between temperature and meridional winds structure

indicates the growth of baroclinic disturbances. The implied poleward heat transport is

consistent with upward wave activity transport (Morgan (1999)). This vertical tilt pat-

tern is a feature of SVs also observed in terms of potential vorticity (PV)(Montani and

Thorpe (2002)). At the final time, the upshear tilt has largely disappeared and a longer

horizontal wavelength is observed. In addition, an eastward tilt for temperature and al-

most vertical phase lines for zonal, meridional winds is also evident in EXP1 and EXP2

at the final time. Features responsible for the near-tropopause and near-surface energy

maxima seen at the final time indicate baroclinically growing perturbations that favor
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converting available potential energy into kinetic energy. Overall, SV structures tend to

be concentrated upstream and in regions of maximum baroclinicity at the initial time

and propagate through these regions and develop downstream waves at the final time.

As explained in Chapter 2, SV structures depend on the norm selected. Both experiments

were able to capture the SV growth and structure. Similar structures at the initial and

final times were observed in EXP2.

Because perturbation growth is assumed to obey tangent linear dynamics, examining the

differences between the nonlinear control and positively and negatively perturbed fore-

casts provides a means to evaluate this assumption. For both experiments, the difference

between the control forecast and the positive (negative) perturb forecast at the 500 hPa

temperature field at the initial and final time is shown in Figure 5.10a-c and Figure 5.13a-

c) (Figure 5.10b-d and Figure 5.13b-d). The comparison between the control forecast and

the perturbed forecast with the TLM output for this variable at this level shows a high

degree of linearity because the perturbation fields appear to be ”mirror” images of one

another - particularly for EXP1. These results are consistent with previous studies in

which nonlinearity for synoptic cases becomes important after two or three days (Errico

and Raeder (1999); Buizza and Palmer (1995)).

5.3 Ensemble Prediction System

An ensemble prediction system (EPS) may elucidate the range of possible forecast out-

comes. The ensemble presented here comprises 24 SVs, hence 49 individual forecasts
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Figure 5.5: 500 hPa geopotential height (dam, black) and temperature field perturba-
tion, (a) Initial and (b) final time corresponding to the first singular vector for EXP1.
The line (B-A) denotes the extent of the vertical cross-section shown in Fig. 5.5a.

with 48 perturbed analyses and one unperturbed (control run). One means of displaying

ensemble output is through the use of ”spaghetti” diagrams which show the distribution

of a particular contour of a given variable for each ensemble member. Figure 5.14 shows

the 1004 hPa isobar (the lowest mean sea level pressure (MSLP) isobar observed) for

both experiments at the final time. Each member is color-coded, the control forecast is

bold black, and the mean is in dashed black. The areas in which large spread is observed

offshore the mid-Atlantic coast are interpreted as high uncertainty in the control forecast

for this variable.

Both experiments indicate a large spread in both the location and intensity of the surface

cyclone (as measured by minimum MSLP). The large area enclosed by the 1004 hPa

isobar of some ensemble members suggests a deeper cyclone and while the smaller area

enclosed indicates weaker cyclones. In addition, the location of some ensemble members

of the 1004 mb isobar is observed to the north (south), suggesting the forecast cyclone is

propagating faster (slower) across ensemble members.



34

A

B

520
526

53
2538

538

544 544550

550

556

556

556

562

562 568
574

Initial Perturbation

(a) 1.7
1.3
0.9
0.4

0.0
0.4
0.9
1.3
1.7

1e 2

A

B

526
532538

538
544 544

55055
0

556
556

562

568
568

57
4

Evolved Perturbation

(b) 8.0
6.0
4.0
2.0

0.0
2.0
4.0
6.0
8.0

1e 2

A

B

520
526

53
2538

538

544 544550

550

556

556

556

562

562 568
574

(c) 1.7
1.3
0.9
0.4

0.0
0.4
0.9
1.3
1.7

1e 2

A

B

526
532538

538
544 544

55055
0

556
556

562

568
568

57
4

(d) 8.0
6.0
4.0
2.0

0.0
2.0
4.0
6.0
8.0

1e 2

Figure 5.6: 500 hPa geopotential heights (m, black), (a)-(b) zonal wind perturbations
and (c)-(d) meridional winds perturbations at the initial and final time corresponding
to the first singular vector for EXP1. The line indicates the region of the vertical cross-

section shown in Figure 5.8

From Figure 5.15, we can observe the forecast spread for the 0◦C isotherm, where the

region along the northeast coast shows the most significant spread. Comparing one isobar

and the 0◦C isotherm for some (random) ensemble members (Figure 5.16), from both

cases, it suggests that the location and intensity of the cyclone along the east coast

advect the isotherm further inland. In EXP1 (Figure 5.16a), we observed that for the blue

ensemble member, the location of the minimum SLP is closer inland, and the isotherm

advects to the east of Pennsylvanian and northwest of Virginia. In contrast, the pink

ensemble member seems to be more consistent with the control forecast. In EXP2, both

ensemble members showed Figure 5.16b variation from the control forecast. The blue
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Figure 5.7: Cross section of zonal wind perturbations for (a) initial and (b) final time.
Cross section orientations are shown in Figure 5.5 for EXP1.

ensemble location is further north and to the west, advecting the isotherm over the

southern part of New York, New Hampshire, and west of Massachusetts. Meanwhile, the

pink ensemble member, the SLP minimum is slight to the south, where the advection

of the isotherm occurs to the east of Pennsylvania and the west of Maryland. The

precipitation type falls in narrow bands (not more than 50 km wide); hence, the slightest

temperature variations can mean the difference between rain, freezing rain, sleet, or snow.

Therefore, this forecast output could help determine the precipitation type (i.e., snow,

freezing rain, liquid water) that will likely occur and the possible areas affected. This is
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Figure 5.8: Cross section of zonal wind perturbations for (a) initial and (b) final time.
Cross section orientations are shown in Figure 5.6 for EXP1.

in contrast to other areas where most ensemble members cluster together observed over

Wisconsin, Illinois, and Kentucky, which would suggest greater confidence in the forecast

of this variable.

Quantitatively, the spread is defined as the standard deviation of ensemble members

from the ensemble mean. The spread among the forecasts at each grid point for mean

sea level pressure, temperature, and the total accumulated precipitation increase along

the northeast coast (see Figure 5.17), Figure 5.18, Figure 5.19) in both experiments.
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Figure 5.9: Cross section of meridional winds perturbations for (a) initial and (b)
final time. Cross section orientations are shown in Figure 5.6 for EXP1.

These results demonstrate the ability of the ensemble to reveal the spread in the model

variables associated with variations in the initial conditions. Note that when SVs are

calculated over the entire domain, we observed variance over the whole domain as well,

and this is consistent with all variables, while when the LPO is used, the variance is

observed closer to the region selected by the LPO. Note that larger MSLP spread over

northern Mexico in EXP1 compared with EXP2 (see Figure 5.17). However, although

both experiments indicate a spread over the east coast of the US for the three variables

analyzed here, a larger spread is observed in EXP2, because the LPO was used.
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Figure 5.10: (a)-(c)The difference between the control forecast and the positive per-
turb forecast for temperature at 500 hPa at the initial and final time respectively for

EXP1. (b)-(d) difference with respect negative perturb forecast.

The variability in MSLP location and intensity will help determine the amount of air

moisture that moves over land that can impact the temperature by advecting the 0◦C

isotherms (Figure 5.15, Figure 5.16) and produce more accumulated precipitation. Fig-

ure 5.18 illustrate the spread in temperature at 850 hPa for both experiments, where

EXP2 shows a more significant variation in temperature over the east coast of the US.

As a consequence, the total accumulated precipitation will vary over the region, as is

observed in Figure 5.19. The accumulated precipitation variable only estimated the total

liquid water content. Although the average total accumulation in precipitation in both

experiments is consistent, comparing the standard deviation, the more extensive spread
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Figure 5.11: 500 hPa geopotential heights (m, black) and temperature field perturba-
tion, (a) Initial and (b) final time corresponding to the first singular vector for EXP2.

is observed in EXP2 (Figure 5.19d), consistent with the previous variable. This result

suggests that the use of the LPO can enhance the spread in variables not included in the

energy norm.

5.4 Short Range Ensemble Forecast (SREF) Plume

Diagram

Short-range ensemble forecast products show the time evolution of a forecast variable for

each ensemble member (48 perturbed members), the control forecast, and the ensemble

mean from a grid point for different locations such as New York City (NYC; 40◦N, 75◦W),

Pittsburgh (PIT; 40◦N, 79◦W), and Washington, D.C (DC; 39◦N, 77◦W). The output is

available at 3h intervals through 24 hours. We can observe the cluster and the outliers

in both experiments for variables such as 2m temperature, 10m wind speed, and total

accumulated precipitation.
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Figure 5.12: 500 hPa geopotential heights (m, black), (a)-(b) zonal wind perturba-
tions and (c)-(d) meridional winds perturbations at the initial and final time corre-

sponding to the first singular vector for EXP2.

Figure 5.20a-c (Figure 5.20d-f) displays the plume diagram for forecast 2-meter temper-

ature for EXP1 (EXP2) at 3-hour intervals out to 24 hours. The warm outliers in the

plume diagram correspond to an ensemble member with slower cold front progression.

In contrast, the cold outliers have a rapid cold front passage for a given location. The

decreasing temperatures during the day are consistent with increasing cold advection in

the wake of the developing coastal cyclone. The location where more ensemble mem-

bers tend to be above the mean and control forecast implies the larger tendency to have

warmer temperatures by the final time, suggesting weaker cold advection in the wake of

the surface cyclone. The spread in the EXP1 2-meter temperature forecast for PIT and
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Figure 5.13: (a)-(c)The difference between the control forecast and the positive per-
turb forecast for temperature at 500 hPa at the initial and final time respectively for

EXP2. (b)-(d) difference with respect negative perturb forecast.

DC are relatively small until about 1200 to 1500 UTC, while in the first 3h of the fore-

cast, the spread increases briefly in NYC. Interestingly, the spread for EXP2 near-surface

temperature forecasts (Figure 5.20d-f) increases immediately for all three locations, with

the largest spreads observed for NYC and PIT. The spread in the temperature among

ensemble members increases to 5◦C for EXP1 and 6◦C at the final time. These results

are consistent with what was observed in the preceding sections, where some ensemble

members indicate faster (slower) displacement of the cyclone (i.e.,Figure 5.16). In both

experiments, the control forecast and the mean for the temperature at 2m seem consistent.
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Figure 5.14: 1004 hPa isobar for all ensemble members at the final time for (a) EXP1
and (b) EXP2.. Control forecast (black line), mean (dashed black) positive perturb

forecast (solid lines) and negative perturb forecast (dashed lines).

Figure 5.21a-c (Figure 5.21d-f) illustrates the forecast for 10-meter winds speed for EXP1

(EXP2). In both experiments, PIT shows the largest spread among the ensemble members

after 3h; however, EXP2 shows a large spread among the ensemble members for the three

locations. Further, based on those plume diagrams, we observed an overall increase in

wind speed by the final time in NYC and DC, suggesting the passage of a cold front.

Contrary to the temperature at 2m, the mean for the wind speed at 10m is below the

control forecast, indicating that more ensemble members predict weaker winds.

A similar analysis for the total accumulated precipitation for both experiments is shown in

the Figure 5.22a-c (Figure 5.22d-f). Both show an increase in the total accumulated pre-

cipitation starting around the same times at 1500 UTC for NYC, 0600 UTC for PIT, and
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Figure 5.15: 0°C isoline for all ensemble members, control forecast (black line), pos-
itive perturb forecast (solid lines) and negative perturb forecast (dashed lines) for (a)

EXP1 and (b) EXP2.

1200 UTC for DC. while EXP2 shows a slight increase in the spread in total accumulated

precipitation by the final time in PIT and DC (Figure 5.22b and Figure 5.22f). The mean

is slightly above the control run for the total accumulated precipitation, suggesting that

the ensemble members tend to predict larger precipitation accumulation. Additionally,

comparing both experiments, the plume diagram for EXP2 shows more spread among

the ensemble members, particularly for the 2-m temperature.

5.5 Estimate of Probability

The EPS can assess the probability of exceeding forecast thresholds for temperature,

mean sea level pressure, and precipitation.
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Figure 5.16: Control forecast (solid), average (dashed), and perturb forecast (color-
coded) for 0°C isoline at 850 hPa at the final time for (a) EXP1 and (b) EXP2.992
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Figure 5.17: Control forecast (solid), average (dashed), and standard deviation
(shaded) for SLP at the final time for (a) EXP1 and (b) EXP2.

Figure 5.23 illustrates a post-processing procedure to calculate the probability the pre-

dicted temperature falls below 0°C. For the event under consideration, this probability

would be useful in assessing whether freezing precipitation or icy conditions were possible

in the northeastern US. The estimated probabilities calculated at each grid point are the
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Figure 5.18: Control forecast (solid), average (dashed), and standard deviation
(shaded) for temperature at 850 hPa at the final time for (a) EXP1 and (b) EXP2.

ratio of the number of ensemble members with a temperature at or below freezing to the

total number of ensemble members. The total number of forecasts for EXP1, EXP2, and

the differences between EXP1 and EXP2. Both experiments produce similar probabilities

to predict temperature below 0°C (Figure 5.23a and Figure 5.23b). Observing the differ-

ence between both experiments, (Figure 5.23c) the blue areas identify regions that EXP1

is more likely (about around 12 % points higher) to predict temperature below 0°C while

the red areas suggest that EXP2 is about 7% points higher in predicting a temperature

below 0°C.

To estimate the probability that at each grid point the pressure is lower than 1005 hPa,

the number of forecast members that predicted SLP below 1005 hPa is divided by the total

number of ensemble members (49). In Figure 5.24 and Figure 5.25, the 6 hourly estimates

of this probability is shown. The intensification of the cyclone in these six-hourly maps

through the final time is evident. The probability of observing SLP below 1005 hPa

increases from 10% at 0600 UTC (Figure 5.24d) to 95% at 1200 UTC (Figure 5.24e) in
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Figure 5.19: Average and standard deviation for total accumulated precipitation at
the final time: (a)-(c) for EXP1 and (b)-(d) for EXP2.

EXP1, suggesting baroclinic influences that could contribute to faster development of the

cyclone. This set of figures demonstrates the probability of intensification of extratropical

cyclones. The 24h difference between EXP1 and EXP2 is shown in Figure 5.26;. However,

both experiments suggest areas to predict SLP below 1005 (around 15%), and EXP1 (red

areas) shows a more extensive distribution, suggesting a more intense development than

EXP2.

Figure 5.27 and Figure 5.28 show the probability of occurrence of precipitation exceeding

0.01” (panel a) and 0.5” (panel b) for both experiments computed as the relative frequency

of these events for both experiments, respectively. As would be expected, the results
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suggest a slight decrease in area and probability by increasing the total accumulation

threshold. While both sets of probability charts appear similar, the probabilities with

EXP2 are somewhat lower for both thresholds. Given the earlier evidence for a slightly

stronger cyclone in the EXP1, this may suggest the role of diabatic heating differences

influencing the cyclone intensity (less for EXP2).

Figure 5.29 and Figure 5.30 show the probability of 10m wind speed exceeding 20kt. Both

experiments show consistent results for the area and timing of increasing probability for

wind speeds exceeding the 20kt threshold. It is important to point out that in Figure 5.29d

and Figure 5.30d we observe a larger probability in EXP1, suggesting faster development.

In Figure 5.31 we observe that 20 % (red areas) is more likely for wind speed at 10 m ¿20

kt in EXP1, while 15 % (blue areas) is more likely in EXP2.
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Figure 5.20: Plume diagram, 2m Temperatures (°C) from the WRF medium-range
ensemble forecast system for EXP1 initialized at 1200 UTC 4 December 2020 for three
different locations: (a) New York City, (b) Pittsburgh, and (c) Washington, D.C. Con-
trol forecast (bold black), perturb forecast (color-coded), ensemble mean (dashed black).

The fields in panels (d)–(f) are repeated for EXP2.
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Figure 5.21: Plume diagram, 10m wind speed (kt) from the WRF medium-range
ensemble forecast system for EXP1 initialized at 1200 UTC 4 December 2020 for three
different locations: (a) New York City, (b) Pittsburgh, and (c) Washington, D.C. Con-
trol forecast (bold black), perturb forecast (color-coded), ensemble mean (dashed black).

The fields in panels (d)–(f) are repeated for EXP2.
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Figure 5.22: Plume diagram, total accumulated precipitation (inches) from the WRF
medium-range ensemble forecast system for EXP1 initialized at 1200 UTC 4 December
2020 for three different locations: (a) New York City, (b) Pittsburgh, and (c) Washing-
ton, D.C. Control forecast (bold black), perturb forecast (color-coded), ensemble mean

(dashed black). The fields in panels (d)–(f) are repeated for EXP2.
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Figure 5.23: The probability of occurrence of this event at each grid point which
computed by dividing the number of forecast members that predicted temperature
below 0C by 2N+1, the total number of forecasts for (a) EXP1, (b) EXP2 and (c)

EXP1-EXP2.
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Figure 5.24: Forecasts of the estimated probability that SLP is below 1005 hPa during
the period from 1200 UTC 4 Dec to 1200 UTC 5 Dec 2020 for EXP1.
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Figure 5.25: Forecasts of the estimated probability that SLP is below 1005 hPa during
the period from 1200 UTC 4 Dec to 1200 UTC 5 Dec 2020 for EXP2.
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Figure 5.26: The difference of probability of occurrence of this event at each grid
point that predicted SLP is below 1005 hPa between EXP1 and EXP2.
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Figure 5.27: Forecasts of the estimated probability for different total accumulation
threshold: (a) ¿0.1 inches, and (b) ¿0.5 inches at the final time 1200 UTC 5 December

2020 for EXP1.

Figure 5.28: Forecasts of the estimated probability for different total accumulation
threshold: (a) ¿0.1 inches, and (b) ¿0.5 inches at the final time 1200 UTC 5 December

2020 for EXP2.
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Figure 5.29: Forecasts of the estimated probability that wind speed at 10m is larger
than 20kt during the period from 1200 UTC 4 Dec to 1200 UTC 5 Dec 2020 for EXP1.
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Figure 5.30: Forecasts of the estimated probability that wind speed at 10m is larger
than 20kt during the period from 1200 UTC 4 Dec to 1200 UTC 5 Dec 2020 for EXP2.
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Figure 5.31: The difference of probability of occurrence of this event at each grid
point that predicted wind speed at 10m is larger than 20 kt between EXP1 and EXP2.]
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Chapter 6

Summary

The simulation of initial condition uncertainties is fundamental for creating and applying

an ensemble forecast system. The preceding sections demonstrate the first-ever WRF

ensemble predictions system generated using the singular vector technique for a short-

range forecast. This technique was tested using a dry energy norm with a local projection

operator. In addition, the initial development of ensemble post-processing methods to

reveal forecast spread was demonstrated. Results from all cases analyzed (not shown),

including the one presented here, are similar to previous studies (Errico and Raeder

(1999); Buizza and Palmer (1995)), including the appropriateness of linearity for at least

a day, the initial SV energy concentrated at lower levels, and forecast spread among

variables being flow and case dependent. Initial indications show robust forecast spread

for mid-latitude baroclinic systems and less spread (so far) for tropical weather systems

(not shown). This may be due to the moisture variable not yet being fully incorporated



59

into the norm or due to the coarse resolution of the model. Although both experiments

considered here reveal a spread in the forecast, as expected, incorporating an LPO over

a weather feature like a mid-latitude cyclone development will concentrate perturbation

growth over that feature. Therefore, it will be driving a larger spread in the development

of that feature than would be achieved by SVs that are evaluated over the entire model

domain. Overall, results show robust forecast spread for mid-latitude baroclinic systems

and less spread for tropical weather systems (not shown). This may be due to water vapor

mixing ratio not yet being incorporated into the norm or due to the coarse resolution of

the model. This led to further questions such as the impact of adding the moisture

term to the energy norm. This system can generate up to 11 ensemble members in

two hours after 30 iterations using 40 cores on the Amazon Web Services (AWS) linux

platform. This technique has been successfully implemented using AWS to benefit the

operational predictions for American Family Insurance. Furthermore, experimental post-

processing products have been developed to reveal the spread (i.e., standard deviation)

in the model variables and estimate the probability of threshold exceedances for model

variables precipitation, mean sea level pressure, and wind speed. This forecasting tool

shows the uncertainty range and the most likely outcome for a weather event.
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Chapter 7

Future Work

The work demonstrated in this thesis provides a platform for further exploration and

development of an ensemble prediction system as well as a platform for studying the

predictability of specific atmospheric phenomena. Below we discuss the immediate next

steps to transform the delivered SV code to a robust operational system and some initial

thoughts on how this SV code could be used to explore the predictability of organized

tropical weather systems.

This work demonstrates the process and feasibility of using the WRF model, its adjoint,

and its tangent linear model to calculate SVs for use as initial perturbations for an opera-

tional ensemble forecast system. The feasibility of the developed system is manifest in its

being able to be successfully run at a 90km grid spacing within a time frame comparable

to a 9km operational deterministic forecast with an inner grid of 3km using comparable
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computing resources. In principle, the deterministic forecast, coupled with the measures

of forecast spread (at coarser grid spacing) would allow forecasters to understand the flow

dependent predictability for each forecast cycle. In order for this vision to be realized;

however, additional work, beyond the scope of this Masters’ thesis, would need to be

completed. This work includes ensemble forecast calibration and verification, running

the ensemble with a grid spacing commensurate with the operational deterministic sys-

tem, and reconsideration of the initial and final time norms through inclusion of water

vapor or through the use of an analysis error metric at the initial time.

While post-processing of the ensemble output reveals spread in the cases shown (and

for others considered), an evaluation of the ensemble in terms of accuracy, skillfulness,

and reliability is needed for this system to be indeed fit for operational purposes. Ac-

curacy measures the degree of agreement between forecasts and observations, while skill

is a comparative measure against a reference data set (e.g., persistence or climatology).

Reliability measures how well the predicted probabilities of an event correspond to their

observed frequencies. The use of the frequency of occurrence of events as a measure of

probability of occurrence of those events represents a crude first step in calculating the

probabilities for this system. It is proposed that application and evaluation of a prob-

ability skill score such as the Brier skill score or ranked probability skill score over an

extended period, would allow quantification of the performance of the probabilistic pre-

diction system relative to climatology. The model resolution may increase the degree of

uncertainties in the forecast; hence, the nonlinear simulations to 30 km will be examined
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and compared with the spread. The following step will be to create a real-time, initial

ensemble prediction system for the AOS server using the WRF model.

As noted in chapter 2, the norm defining the SV amplitude at either the initial or final

time has an impact on the SV structure and evolution. Previous studies (Ehrendorfer

et al. (1999), Coutinho et al. (2004), Barkmeijer et al. (2001)) have shown that inclusion

of water vapor perturbation energy in the initial SV norm leads to different initial struc-

tures that tend to grow faster (amplifying the forecast spread). Such perturbations are

essential for SV applications in a tropical environment. Hence, test of the moist energy

norm will be performed to investigate how moisture impacts the structure and evolution

of WRF model SVs. Finally, it is important to note that while the energy norm has been

used as a surrogate for initial time analysis uncertainty, other measures of initial time un-

certainty could be considered including use of a flow-dependent, analysis error covariance

(AEC) as an initial time uncertainty measure. It is recognized that the AEC is not well-

characterized or calculated in contemporary data assimilation systems, but estimates of

the AEC may be obtainable from ensemble Kalman filter data assimilation approaches.

It would be of interest to compare SV ensembles using the dry or moist energy norms

with one using an estimate for the AEC to evaluate the impact on ensemble skill and

reliability.

Singular vectors identify those perturbations to a control forecast trajectory that will am-

plify most rapidly over a finite time, the “optimization time interval (OTI).” The grow-

ing perturbations are configured to optimally extract energy from the control trajectory’s
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basic state through barotropic, baroclinic, or moist processes. The ability to identify dur-

ing each forecast cycle regions for which energy is available for disturbances to develop

posing an intriguing possibility - use of SVs to diagnose the development potential for

atmospheric disturbances. A planned extension of this work will involve the application

of SV techniques incorporating different norms to enhance the short-term development

potential for African Easterly waves and tropical cyclones and the relationships between

the magnitude of barotropic and baroclinic shear as well as moisture distributions to the

magnitude of the singular value spectrum.
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