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abstract

Estimates of cloud properties are critical to our understanding of weather and climate
variability, but their estimation from satellite imagers is a nontrivial task. Machine learning
(ML) approaches have recently gained popularity in earth science and remote sensing. This
work explores the use of a kind of ML model, a neural network, for cloud detection and
cloud-top pressure estimation from the Visible Infrared Imaging Radiometer Suite (VIIRS),
Advanced Baseline Imager (ABI), and Moderate Resolution Imaging Spectroradiometer
(MODIS). Several comparisons illustrate large improvement over current operational prod-
ucts which rely on more conventional statistical or physically-based approaches.

This increase in performance merits study into the interpretability of neural network
cloud property models. A comparison of several modern interpretability frameworks for
neural networks shows mixed results and implies that current tools may be insufficient for
explaining neural network output in remote sensing tasks with multicollinear predictors.
Nonetheless, we find some agreement on the importance of particular spectral features,
spatial metrics, and numerical weather prediction output that could inform future algorithm
development.

A key challenge in transitioning algorithms to satellite climate records is ensuring
intersensor consistency. If this is not considered, then long-term analyses of clouds risk being
affected by changes in observation platform which can be frequent in our longest satellite
records. A method is proposed that simultaneously minimizes differences between imager
predictions for matching observations and predictions with respect to a reference instrument.
These results offer one pathway for ensuring the appropriateness of ML algorithms in the
analysis of satellite climate records.
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0 preface

Machine Learning (ML) methods have rapidly gained popularity in the Earth science

community including applications in weather prediction, climate data analysis, remote

sensing, and other areas of research. This is due to many factors including the development

of efficient techniques to train neural networks (Rumelhart et al., 1986), the development of

convolutional neural networks (LeCun et al., 1995) the wide availability of large datasets

(Deng et al., 2009 for example), and the increasing success of neural networks in processing

image data (Krizhevsky et al., 2012). Given the relatively quick uptake of these approaches

into key applications in Earth science (Düben et al., 2021), it is worth studying the subtleties

of evaluation, interpretability, and generalization that accompany their implementation.

This dissertation specifically focuses on the application of neural networks for the cloud

detection and cloud-top pressure from spaceborne satellite imagers. While this work is

almost exclusively framed around the specific task of imager cloud property estimation,

the methods used can serve as a examples for developing ML-based models in the broader

remote sensing and Earth science community.

In particular, I aim to explore three research questions:

1. Can machine learning improve cloud property estimation relative to conventional

operational algorithms?

2. How do we address interpretability concerns from machine learning methods and

to what extent can modern ML interpretability frameworks help us understand how

these models outperform conventional approaches?
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3. How do we improve the generalization capacity of these models and allow for their

use across multiple heterogeneous sensors?

While these questions are posed as separate efforts in each chapter, their solutions are

intimately connected and facilitate the transition of ML-based approaches to operations

and cloud climate records. Question 1 motivates the investigation into interpretability and

generalization since we show very substantial improvement for key conditions in cloud

detection and cloud-top pressure estimation. Without first confirming that these approaches

outperform modern conventional approaches, it is difficult to argue for their use due to

concerns relating to interpretability, uncertainty estimation, and generalization.

Question 2 aims to understand how ML-based approaches improve upon modern con-

ventional algorithms and informs future algorithm development and sensor design. This is

a difficult task since certain ML approaches are often regarded as black boxes and it often

proves difficult to understand how certain inputs are used and what statistical relationships

are exploited in particular ML models. I attempt to characterize a sample of current tools that

exist to understand neural network predictions. Addressing question 2 can give us insight

into how to improve both conventional and ML approaches, understand the limitations of

the ML models, and help us understand the physical relationships useful for identifying

particular cloud properties.

A key use of cloud property estimates is the detection of long-term variability of clouds

in satellite records of observations from multiple imagers. Question 3 specifically facilitates

the use of the these approaches in cloud climate records. Ensuring consistency in ML

approaches among multiple imagers directly contributes to our ability to assess changes in

clouds over our current observational records. These efforts are key to ensuring that neural
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networks developed in this work are useful in scientific applications relevant to climate.

In addressing these questions I illustrate that neural network-based approaches for

cloud detection and cloud-top pressure estimation can significantly outperform modern

operational methods for the Visible Infrared Imaging Radiometer Suite VIIRS) the Advanced

Baseline Imager (ABI) and the Moderate Resolution Imaging Spectroradiometer (MODIS).

In exploring interpretability frameworks for neural network models, I find that current

methods for explaining predictions (even from relatively simple models) are unsatisfactory

for Earth science remote sensing applications with multiple correlated features. However,

there are some key takeaways about the importance of particular spectral channels, spatial

metrics and NWP information that can be useful for future cloud-top pressure algorithm

development. Finally, I develop a method to substantially improve the intersensor consistency

of cloud-top pressure models developed for VIIRS and MODIS. This method is able to

match or improve upon the intersensor consistency of an operational product, but with a

roughly 40% reduction in error relative to a high quality reference instrument. This approach

could be one way of facilitating the transition of ML algorithms into satellite climate records

made up of multiple heterogeneous imagers. Furthermore we show how this approach can

succeed even in scenarios where one imager lacks labeled data from a reference instrument.

Each chapter of this dissertation addresses each research question separately and repre-

sents an article that has already been published (Chapter 1; White et al., 2021), currently

in peer-review (Chapter 2), or in preparation (Chapter 3) at the time of writing. While the

introductions of each contain similar information, they are written specifically to motivate

the objectives of each work. Thus, they are kept here in their entirety with only light editing.

As a result, each chapter of this dissertation can be read and considered independently and
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in any order.
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1 evaluation of viirs neural network cloud detection

against current operational cloud masks

1.1 Introduction

Clouds serve many critical roles in the earth’s weather and climate system, and are

one of the largest sources of uncertainty in future climate scenarios (Stocker et al., 2013).

Determining their presence in current observational records is a fundamental first step

in understanding their variability and impact. Polar-orbiting satellite imagers such as the

Visible Infrared Imaging Radiometer Suite (VIIRS; Cao et al., 2013) offer frequent views of

global cloud cover at high spatial resolution. However, cloud detection from passive visible

and infrared observations is a nontrivial problem. This is particularly true for clouds with

low optical depths, and clouds above cold and visibly reflective surfaces (Ackerman et al.,

2008; Holz et al., 2008). These qualifications on imager cloud detection make it difficult

to construct confident observational analyses of cloud variability from passive satellite

instruments especially in the polar regions. As a result, many differences exist between

cloud climate records made with different algorithms, or sensors with different capabilities

(Stubenrauch et al., 2013).

Machine learning (ML) has become a popular tool for statistical modeling in earth

sciences including the use of both supervised and unsupervised methods. Supervised ML

methods in the earth sciences can require large amounts of training data often created from

physically-based models, obtained from manual labeling, or observed from other instrument

platforms. These approaches have been extensively used in characterizing the surface and
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atmosphere from remote sensing instruments. A sample of popular ML approaches (and

their applications) used in satellite meteorology include naïve bayesian classifiers (Uddstrom

et al., 1999; Heidinger et al., 2012; Cintineo et al., 2014; Bulgin et al., 2018), random forests

(Kühnlein et al., 2014; Thampi et al., 2017; Wang et al., 2020), and neural networks (Minnis

et al., 2016; Håkansson et al., 2018; Sus et al., 2018; Wimmers et al., 2019; Marais et al.,

2020).

In this analysis, we develop a neural network cloud mask (NNCM) that uses the moderate

resolution channels from VIIRS to determine whether a given imager pixel contains a cloud

or is cloud-free. We train the neural network using observations from the Cloud-Aerosol

Lidar with Orthogonal Polarization (CALIOP; Winker et al., 2009). Observations from

CALIOP are often used to validate cloud masks and cloud property estimates due to the

instrument’s ability to retrieve vertical profiles of the atmosphere and characterize clouds

with low optical depth. Additionally, its placement in the A-train constellation makes it a

convenient reference for Moderate Resolution Imaging Spectroradiometer (MODIS) cloud

property validation (Holz et al., 2008). The Suomi National Polar-orbiting Partnership

(SNPP) VIIRS instrument, despite not being in the A-train constellation, makes spatially

and temporally coincident observations with CALIOP roughly every two days. Thus, there

is opportunity for matching observations between these two sensors with some limitations.

One such limitation is that the range of atmospheric and surface conditions sampled by

CALIOP do not necessarily match that of SNPP-VIIRS. Conditions where collocations

between these two sensors occur are even less representative, and do not contain instances

of significant sun glint. In this work we demonstrate how a very simple semi-supervised

learning approach can ameliorate this specific limitation.
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There are several recent applications of ML in characterizing clouds from imager obser-

vations that use CALIOP as a source of labeled data. Perhaps most relevant is Wang et al.

(2020) in which several random forest (RF) models are trained to identify the presence and

phase of clouds from VIIRS observations under somewhat idealized conditions (spatially ho-

mogeneous and low aerosol optical depths). In such conditions the, RF models demonstrated

improvements in cloud masking and cloud phase determination over current algorithms.

Håkansson et al. (2018) uses CALIOP as a training source for estimating MODIS cloud-top

heights with precomputed spatial features, MODIS brightness temperatures, and numerical

weather prediction (NWP) temperature profiles using a neural network. They additionally

demonstrate the ability to accurately estimate cloud-top heights with channels only avail-

able on sensors such as the Advanced Very High Resolution Radiometer (AVHRR) and

VIIRS. Similarly, Kox et al. (2014) trained a neural network with CALIOP to determine

the presence of cirrus clouds and estimate their optical depth and cloud-top height from

SEVIRI observations. The Community Cloud retrieval for CLimate (CC4CL; Sus et al.,

2018) also uses neural network based approaches for imager cloud detection. The CC4CL

neural network models are trained with collocations between the Advanced Very-High

Resolution Radiometer (AVHRR) and CALIOP. Adjustments are applied to shared MODIS

and Advanced Along-Track Scanning Radiometer (AATSR) channels (accounting for differ-

ences in spectral response functions) to ensure the approaches generalize beyond AVHRR to

those imagers as well. While the majority of these applications for cloud property estimates

are relatively recent, there were successful implementations of ML approaches well before

the launch of CALIOP using manually labeled scenes (Welch et al., 1992).

Our approach aims to improve upon existing literature in several ways. Significant
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effort has gone into determining useful spectral characteristics in the development of past

imager cloud masks. Still, it is possible that not all relevant variability is being exploited

particularly that which involves three or more channels. Rather than relying on precomputed

spectral or textural features, we allow a neural network to learn relevant features from a

local 3 pixel by 3 pixel image patch from all 16 moderate resolution VIIRS channels. This

necessitates a relatively large neural network architecture in order to exploit the variability

of these observations to discriminate cloudy from cloud-free scenes. We train the model

without filtering CALIOP collocations to encourage more reliable predictions under non-

ideal conditions. Additionally, we specifically address issues caused by the lack of sun glint

scenes in collocations between SNPP VIIRS and CALIOP. This specific implementation

does not require surface temperature, surface emissivity, the use of clear-sky radiative

transfer modeling, snow cover, or ice cover information. The only ancillary data used is a

VIIRS-derived land/water mask in the level-1 geolocation product. Our approach uses a

single model for all surface types and solar illumination conditions and in some respects,

greatly simplifies the processing pipeline for imager cloud masking.

In this analysis, we demonstrate that a neural network cloud mask (NNCM) can out-

perform two operational VIIRS clouds masks in detecting clouds identified by CALIOP.

In particular, we note large improvements at night in the middle and high latitudes. Since

cloud masks may have differing definitions of what substantiates a cloud, we evaluate the

performance of each approach after removing clouds above an increasing lower optical

depth threshold. The usefulness of the predicted probabilities as a proxy for uncertainties

are assessed. We also show an example of how differences in cloud detection ability can

result in vastly different spatial and temporal characteristics of regional mean cloud cover
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assessments in the polar regions.

1.2 Instruments and Data

VIIRS

VIIRS is a polar-orbiting visible, near-infrared, and infrared imager on board the S-NPP

and NOAA-20 satellites. The swath width of VIIRS is roughly 3060 km allowing for at

least twice daily views of any given ground location and more frequent views at higher

latitudes. VIIRS altogether measures top-of-atmosphere radiation for 22 different channels.

This is made up of five imaging channels (I-bands) with a nadir resolution of 375 m, and

sixteen moderate resolution channels (M-bands) with a nadir resolution of 750 m (Table

1.1). VIIRS has an additional Day/Night Band (DNB) for nocturnal low-light applications.

This work is focused entirely on the sixteen moderate resolution channels and does not

include the use of the higher resolution I-bands or the DNB. Furthermore, we only consider

VIIRS data from S-NPP which has an equatorial crossing time of 1:30 pm.

CALIOP

CALIOP is polar-orbiting lidar taking near-nadir observations on board the Cloud-

Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite which

also has an equatorial crossing time of roughly 1:30 pm. CALIOP measures at wavelengths

of 1064 nm and 532 nm with a horizontal resolution of 333 m. The individual lidar footprints

are aggregated in the creation of both the 1 km and 5 km CALIOP Cloud Layers products.

CALIOP’s ability to characterize optically thin cloud layers make it a suitable validation
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source for imager cloud masking. While CALIOP, in many respects, is the more appropriate

instrument for accurately estimating cloud properties (including cloud detection), its spatial

sampling is extremely sparse relative to VIIRS and other imagers. This motivates our goal

of extending CALIOP’s cloud detection ability to passive imager measurements.

MVCM and ECM

Current operational cloud masks for VIIRS include the NOAA Enterprise Cloud Mask

(ECM; Heidinger et al., 2012), and the Continuity MODIS-VIIRS Cloud Mask (MVCM;

Frey et al. 2020). The ECM algorithm was originally designed for AVHRR climate

applications and has since been extended to a wide range of geostationary and polar-orbiting

imagers including VIIRS. This approach is based on several naive bayesian classifiers that

are each trained specifically for different surface types. This approach is similarly trained

using CALIOP collocations with VIIRS and makes probabilistic predictions of cloudy or

cloud-free pixels. A key advantage of the ECM’s naive bayesian approach is that certain

predictors can be removed or turned off (such as visible channels during the night). Due to

the simplicity of naive bayesian classifiers, the ECM is overall more interpretable than our

proposed neural network.

The MVCM has heritage with the MODIS cloud mask (Ackerman et al., 2010), and

has been adjusted to only use channels available on both VIIRS and MODIS. Obtaining

continuity in cloud detection between the two imagers is a specific goal of the MVCM.

The MVCM has a collection of cloud tests each with specified low-confidence and high-

confidence thresholds used in a fuzzy-logic approach. The specific tests that are applied

are determined by solar illumination and the surface type. The clear-sky confidence values
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imparted by each applied test are combined to produce a preliminary overall clear-sky

confidence value which can then be modified by clear-sky restoral tests. The MVCM’s

reliance on physically-based reasoning also make its predictions relatively interpretable

compared to our neural network approach.

Collocation Methodology

The labeled data that is used to train and evaluate the performance of the neural network

comes from version 4.2 of the 1 km CALIOP Cloud Layers product (Vaughan et al., 2009).

A vertical profile is determined to be cloudy when the number of cloud layers is equal to or

exceeds one. Otherwise the profile is assumed to be cloud-free. The CALIOP labels are

set to zero for cloud-free observations, and one for cloudy observations. Other CALIOP

information such as the cloud-top pressure and cloud feature type are used in the validation

of the cloud masks. Cloud optical depth is obtained from the 5 km CALIOP Cloud Layers

product since it is unavailable at the 1 km resolution. There are difficulties in matching

satellite imager measurements with CALIOP. Many of these issues are discussed at length in

Holz et al. (2008), and include differences in spatial footprint, viewing angle, the observation

time between the two instruments, and the horizontal averaging applied within the CALIOP

products to increase their signal to noise ratio.

Collocations between SNPP VIIRS and CALIOP are obtained by performing a nearest

neighbors search between the 1 km CALIOP Cloud Layers product, and the 750 m (at

nadir) VIIRS observations. A parallax correction is then applied to account for pixels with

high altitude clouds that are observed at oblique viewing angles by VIIRS. The details of

the parallax correction are identical to that of Holz et al. (2008). Collocations with times



12

that differ by more than 2.5 minutes are removed. This is a particularly strict requirement

relative to Heidinger et al. (2012) which uses a limit of 10 minutes and severely limits both

the number of possible collocations between these instruments and the range of viewing

conditions sampled. We make this choice because the time difference between observations

is a critical factor in the representativeness of a CALIOP profile for a given imager pixel.

This is particularly true for small clouds that occupy a horizontal area similar to or smaller

than a single VIIRS pixel in environments with high wind speeds. Collocations are found for

these instruments from January 2016 through December 2019. Some gaps in the collocation

dataset exist and are primarily due to the availability of CALIOP data products. Following

the recommendations from the CALIPSO team, we remove all CALIOP profiles that contain

low-energy laser shots with 532 nm laser energies less than 80 mJ. This results in a relative

sparsity of collocations over central South America after mid-2017. In total, roughly 27.1

million collocations were collected for this study with the above requirements.

Neural Network Inputs

The observations used as input into the neural network come from the moderate resolu-

tion channels (M1-M16; Table 1.1) obtained from the NASA processing of SNPP VIIRS.

All channels are either expressed as a reflectance or brightness temperature. In addition to

the VIIRS channels we also include a binary land/water mask, solar zenith angle, sun glint

zenith angle, and the absolute value of latitude. The binary land/water mask is created from

an eight-category land/water mask included the in the VNP03MOD geolocation product

which includes land, coastline, and various types of water surfaces. Our binary mask is

created by grouping together all water surfaces as a single water category, and grouping
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together land and coastline as a single land category. Sun glint zenith angle is the angle

between the surface normal of the estimated specular point (the point of maximum sun

glint) and atmospheric path viewed by VIIRS. For each of the twenty inputs, a 3 pixel by 3

pixel array is extracted and is used to predict the cloudy or cloud-free label at the center

pixel.

The VIIRS/CrIS fusion channels (Weisz et al., 2017) are estimates of MODIS-like

channels using coarse-resolution measurements from the Cross-track Infrared Sounder

(CrIS) that are interpolated to match the moderate resolution channels of VIIRS. A subset

of the VIIRS/CrIS fusion channels without solar contributions (Table 1.2) are used in a

pseudo-labeling model for sun glint scenes (described later in section 1.3), but these are

not used in the final NNCM model. Table 1.3 summarizes which inputs are used for the

NNCM, a neural network without pseudo-labeling, and the pseudo-labeling model.

Dataset Splitting

In statistical modeling it is important to ensure independence between the training,

validation, and testing datasets. The CALIOP Cloud Layer product’s feature identification

algorithm often relies on horizontal averaging to detect cloud layers of low optical depth.

This averaging increases the signal to noise ratio and allows for more accurate identification

of such features. As a result, clouds with low optical depth may have their attributes

replicated across neighboring CALIOP profiles. As pointed out in Håkansson et al. (2018),

separating imager and CALIOP collocations by random sampling would result in three nearly

identical datasets and would yield a model that greatly overfits. To avoid this, we stratify our

collocations by year into our training set that consists of 14.3 million collocations from 2016
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and 2018, a validation set consisting of 5.7 million collocations from 2017, and our testing

set consisting of 7.1 million collocations from 2019. The training set is what is supplied

to the model during the training stage. The validation dataset is used for hyperparameter

tuning during model development and early stopping during the training stage. The testing

set is used to provide estimates of model performance which we will analyze in section 1.4

and is not seen by the model during the training or hyperparameter tuning stages.

The spatial and seasonal distribution of these collocations can be seen in Fig 1.1. There

are slight differences in spatial sampling between the testing dataset and the validation

and training datasets. We expect that this is due to a combination of the strict 2-minute

time difference we require of the collocations and the exit of CALIPSO from the A-train

in late 2018 (Braun et al., 2019). We select 2019 for our testing dataset since it provides

the most spatially and temporally complete dataset. 2016 and 2018 are used in our training

dataset since they offer the next largest number of collocations. We judged that 2017 was

the least spatially and temporally representative hence its use only as a validation dataset

for hyperparameter tuning and early stopping during training.

CALIOP Data Preprocessing

A common preprocessing step when training imager cloud masks with CALIOP observa-

tions is to filter the collocations using several heuristics in order to infer when CALIOP cloud

detection is unreliable or unrepresentative of the corresponding imager pixel. Heidinger

et al. (2012) filters AVHRR collocations so that only CALIOP observations where the 5

km along-track cloud fraction is equal to 0% or 100% are included. Holz et al. (2008)

only retained MODIS pixels where all collocated CALIOP retrievals are identical. Wang
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et al. (2020) require that both the 1 km and 5 km CALIOP Cloud Layer products agree,

that five consecutive 1 km CALIOP profiles agree, and they additionally remove profiles

with high aerosol optical depths. Many of these filters achieve a similar result in requiring

that CALIOP profiles, to a varying degree, are spatially homogeneous with regards to the

presence of clouds. This filtering is often applied to remove fractionally cloudy profiles or

profiles where the clouds may have moved out of the corresponding imager pixel. Karlsson

et al. (2020) employ an approach that filters AVHRR/CALIOP collocations on the basis

of cloud optical depth. This is done in an iterative fashion in order to determine the lower

optical depth threshold in which their cloud masking method can reliability detect clouds.

In our approach, we intentionally do not perform any of the above preprocessing steps to

our training dataset. This is because we include a substantial amount of spatial information

in our neural network inputs. If such a spatial filter were applied to the CALIOP data,

then cloud edges and small clouds (often boundary-layer clouds) would rarely occur in

our training dataset. This would yield a large amount of bias in a model that accounts for

any amount of spatial variability and could cause it to generalize poorly. Alternatively, we

apply a spatial filter to only our testing dataset to create a second filtered testing dataset

that we can evaluate our models against. This allows us to evaluate the performance of

our cloud masking model against others using only the most reliable CALIOP collocations

without biasing any model that considers spatial variability. Additionally, we can analyze

the performance of our neural network approach in fractionally cloudy scenes using the

unfiltered testing dataset with the knowledge that these collocations may be overall less

reliable. The specific filter we apply to our testing dataset requires that five consecutive 1 km

profiles agree. This spatial filter creates a filtered testing dataset of 5.9 million collocations
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compared to the unfiltered testing dataset of 7.1 million collocations. In no way does this

filter affect the training or validation data.

1.3 Methods

Pseudo-Labeling Procedure

A general concern in using statistical models such as neural networks, is the ability

for them to generalize to unseen data. One such scenario in this dataset is sun glint. Sun

glint is the specular reflection of visible light usually over water surfaces which results in

very large visible reflectivity for both cloudy and cloud-free observations. In our dataset of

VIIRS/CALIOP collocations, we never observe any substantial amount of sun glint. Thus,

without accounting for sun glint, any statistical model will likely fail to make a reasonable as-

sessment of cloud cover under these conditions. Often, this results in erroneously predicting

cloud cover in sun glint regions due to their high visible reflectivity. In the ECM, sun glint is

handled by turning off cloud tests that use visible and shortwave infrared channels with solar

contributions. In the MVCM, this is handled by decision paths that use visible channels

to detect clear-sky pixels specifically in sun glint regions. CLDPROP optical properties

(which use the MVCM) also use a clear-sky restoral algorithm (Platnick et al., 2017) in an

attempt to remove erroneously cloudy pixels, but it is not included in the MVCM output.

We aim to overcome this limitation by using a simple semi-supervised learning approach

called pseudo-labeling (Lee, 2013). Pseudo-labeling is the approach of using a model to

make predictions on unlabeled data, assuming that some or all of these predictions are

correct, and adding these predictions to the original training dataset as if they were true labels.
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In our application, the pseudo-labeling model only uses VIIRS and VIIRS/CrIS fusion

channels unaffected by sun glint, and the final NNCM model uses all VIIRS channels and

no VIIRS/CrIS fusion channels. Stated simply, adding these pseudo-labels to the training

dataset incentivizes the final NNCM model to match the predictions of an infrared-only

model in areas with sun glint.

We first train a pseudo-labeling neural network model using only channels that are

unaffected by sun glint. For VIIRS, these channels are M14, M15, and M16. In addition to

these VIIRS channels, we also use a subset of the VIIRS/CrIS fusion estimates of MODIS-

like channels (MODIS bands 27-36, Table 1.2) that are similarly unaffected by sun glint,

the binary land/water mask and the absolute value of latitude. The VIIRS/CrIS channels

are included in an effort to make up for the loss of the shortwave and shortwave infrared

VIIRS bands (M1-M13). After training, the pseudo-labeling model is then used to make

predictions for SNPP VIIRS scenes with sun glint of angles of less than 40 degrees over

water. For this purpose, we select scenes from the fifteenth day of every month in 2018

(a year included in our training dataset). This is done to ensure even representation of

seasons and combinations of sun glint angle and latitude. Of these predictions, roughly one

million pseudo-labels are randomly sampled without replacement and added to the original

training and validation datasets as if they were obtained from CALIOP. No pseudo-labels

are added to the testing dataset. The class probabilities for the pseudo-labeled examples are

not required to be equal to 0 or 1. Instead, they are left unmodified in an effort to promote

more reliable class probabilities in pixels affected by sun glint from the final neural network

model.

Before discussing the details of the NNCM, we train a naive model on only CALIOP
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data ignoring the fact that sun glint scenes are not represented in order to better illustrate

the purpose of pseudo-labeling. The neural network without pseudo-labels does not include

solar zenith angle and sun glint zenith angle since these values for sun glint scenes are

outside the range of values for these variables included in CALIOP collocations. The inputs

to each model are summarized in Table 1.3.

In Fig. 1.2 we qualitatively compare the predictions of the NNCM (that is trained

with pseudo-labels) to a neural network model that is not trained with these pseudo-labels.

Without pseudo-labeling, the high visible reflectivity causes the neural network model to

over predict cloud cover in these regions. Even areas far away from the specular point

with only marginal sun glint are significantly impacted. This behavior is not surprising

because sun glint is an out-of-domain prediction for the neural network without pseudo-

labels. This issue is somewhat remedied by including pseudo-labels in training the NNCM

(Fig. 1.2.d). Qualitatively, the ECM (Fig. 1.2.f) appears to be the least effected by sun glint

and most able to correctly discriminate cloud-free from cloudy in the sun glint region. The

MVCM (Fig. 1.2.e) over predicts cloud cover directly over the specular point, but captures

small cloud variability surrounding it. The NNCM makes relatively realistic predictions

compared to without pseudo-labeling. However, it does not capture small cloud variability

around the specular point to the same degree as the ECM. The pseudo-labeling model likely

has low skill in such conditions due to the lack of visible channels and the low contrast

between a low-level fractionally cloudy pixel and the background. There appears to be little

disagreement between the cloud masks for the larger, more reflective, and colder cloud

features.

To summarize, there are three neural network models trained in this work: (1) the NNCM,
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(2) a neural network without pseudo-labels, and (3) the pseudo-labeling model. The NNCM

is the approach we are proposing and evaluating. The neural network without pseudo-labels

and the pseudo-labeling model are developed in support of the NNCM. The only purpose of

the neural network without pseudo-labels is to illustrate the need for pseudo-labeling in Fig.

1.2. The purpose of the pseudo-labeling model is to provide training labels for the NNCM

in sun glint scenes. Only the results from the NNCM are analyzed in Sections 1.4 and 1.5.

In the following section we describe the details behind how the NNCM is trained.

Neural Network Description and Training Details

We use a simple neural network model that consists of Fully Connected (FC) layers,

Leaky Rectified Linear Unit activations (Leaky ReLU), Dropout (Srivastava et al., 2014),

and a sigmoid activation as the last layer. The architecture of this model is described in

Table 1.4. All except the last FC layer are followed by Leaky ReLU activation and 2.5%

Dropout. Dropout is a neural network regularization technique where a fraction of the units

in each layer are randomly ignored and helps prevent over-fitting. For each VIIRS pixel, a

centered 3 pixel by 3 pixel image patch from all 20 inputs is passed to layer group 1 (LG1)

of Table 1.4 and through each layer group successively until the last sigmoid activation is

reached. The last sigmoid activation bounds the output of the model between 0 (indicating

cloud-free) and 1 (indicating cloudy).

The model in Table 1.4 is the result of a grid search over a fairly small set of hyperpa-

rameters. We tested several configurations by multiplying the number of units in all but the

last FC layer by 0.25, 0.5, 1.0, and 2.0. We also tested dropout rates of 0%, 2.5%, 5%, and

10%, and Leaky ReLU vs. ReLU activations. This results in 32 model configurations which
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are each trained and evaluated three times with different randomly initialized weights. Two

configurations with double the number of units in the FC layers reported slightly higher

validation accuracies compared to that of Table 1.4 (a difference of 0.05%). However, we

judged that the increase in prediction time was not worth the very small gains in performance.

Across all model configurations, Leaky ReLU activation was better than ReLU. Dropout

percentages larger than 2.5% only helped when models had a twice the number of units in

the FC layers.

Data augmentation is a common method to artificially increase the diversity of examples

in the training dataset (Shorten and Khoshgoftaar, 2019). This is often performed by creating

plausible alternative views of training examples. Data augmentation methods have been

critical in improving performance on widely-used computer vision benchmarks (Zhang

et al., 2018, for example). In our case, we are limited by the chosen shape and nature of our

input to the kinds of augmentations we can apply to our training dataset. For instance, we

cannot reasonably scale, zoom, or translate (all common augmentations applied to images)

a 3 pixel by 3 pixel image patch where the center values have special meaning. During

training, we apply uniformly random 90 degree rotations (0, 90, 180, 270), horizontal flips,

and vertical flips.

J = −(y log ŷ + (1 − y) log(1 − ŷ)) (1.1)

The neural network is trained to minimize binary cross-entropy, J (Eq. 1.1), where y

is the label and ŷ is the predicted probability. All inputs are scaled to have zero mean and

unit variance with the means and standard deviations calculated from the training dataset.

The Adam optimizer is used with its suggested default parameters (Kingma and Ba, 2015),
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and we did not notice any substantial changes in the final model when other optimization

algorithms were used. The learning rate is initially set to 5 × 10−3 with a mini-batch size

of 4,098 examples. This value is selected using a learning rate range test (Smith, 2017).

After each epoch, the model is evaluated on the validation set. The learning rate is reduced

by a factor of 10 when the performance on the validation dataset does not improve for 3

epochs. This continues until a learning rate of 1×10−6 is reached. Training is stopped once

the validation performance does not improve for 5 epochs. Both the final model, and the

pseudo-labeling model are trained in the same way with the same set of hyperparameters.

Although, since the input size is smaller, the pseudo-labeling model has fewer parameters

in the first fully connected layer. Using the same set of hyperparameters is not necessarily

ideal since the pseudo-labeling model may have a different set of optimal hyperparameters.

We did not perform a separate hyperparameter grid search due to the large computational

cost.

The development of the NNCM and the following analysis was performed using the

TensorFlow (Abadi et al., 2016), NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020),

and Matplotlib (Hunter, 2007) python libraries.

1.4 Results

Validation with CALIOP

When evaluating classification models many performance metrics need to be viewed

in context of the class distribution. Otherwise, quantities such as accuracy (ACC, Eq.

1.4) and true positive rate (TPR, Eq. 1.2; equivalent to probability of detection) can be
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misleading. For example, a trivial binary classification model that predicts only the positive

class achieves 0.9 ACC and 1.0 TPR in a dataset with a positive/negative class distribution

of 0.9 and 0.1 respectively. Thus, while metrics like ACC and TPR are useful, they must be

interpreted within the context of the mean cloud fraction.

We calculate the mean cloud fraction for all VIIRS/CALIOP collocations in our 2019

testing dataset over different surface types for both day and night (Fig. 1.3). For each

instance, a cloud fraction value is reported from CALIOP, the NNCM, the MVCM and

the ECM. Daytime cloud fractions include collocations where the solar zenith angle is

less than 85 degrees. Land and water surface types are determined from the VIIRS level-1

geolocation data product. The presence of sea ice, snow, and permanent snow (primarily

Greenland and Antarctica) is determined from the National Snow and Ice Data Center sea

ice index included with the CALIOP Cloud Layer products. The cloud fraction estimates

are not necessarily representative of the true cloud fraction over these surface types since

they only represent VIIRS/CALIOP collocations for 2019. Instead, we use them to compare

the relative tendencies of each cloud mask to generally overestimate or underestimate cloud

cover for a given surface type.

The NNCM cloud fractions match closely to that of CALIOP with the exception of an

underestimate of 7% over nighttime permanent snow. In all other instances the NNCM

reports cloud fractions that are within 3% of CALIOP. The MVCM predicts smaller mean

global cloud fraction compared to CALIOP. This seems to be due to a combination of

slightly overestimating cloud cover over daytime water, and underestimating cloud cover

elsewhere. Of particular note are nighttime snow scenes where MVCM underestimates by

17%, nighttime sea ice where it underestimates by 24%, and areas with permanent snow
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cover during the night where it underestimates by 30%. The ECM predicts roughly similar

values to the NNCM with the exception of overestimating cloud cover during the night over

sea ice by 12%.

TPR = TP

P
(1.2)

TNR = TN

N
(1.3)

ACC = TP + TN

P + N
(1.4)

BACC = TPR + TNR

2 (1.5)

In order to evaluate the performance of each cloud masking model, we calculate the

balanced accuracy (BACC; Eq. 1.5) of all cloud masks across each surface type examined

in Fig. 1.3. BACC is the mean of the true positive rate (TPR; Eq. 1.2), and the true negative

rate (TNR; Eq. 1.3), where TP is the number of correctly identified clouds, P is the number

of clouds, TN is the number correctly identified of cloud-free scenes, and N is the number

of cloud-free scenes. The advantage of using BACC over ACC (Eq. 1.4) is that BACC

accounts for class imbalance. One example of class imbalance is daytime sea ice scenes

where the mean CALIOP cloud fraction is 76%. A trivial model that predicts 100% cloud

fraction would obtain 76% ACC, but only 50% BACC over daytime sea ice.

BACC values are calculated for both the filtered (Table 1.5) and unfiltered (Table 1.6)
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datasets. Table 1.5 represents the most reliable collocations, but this means that fractionally

cloudy scenes, cloud edges, and boundary layer clouds are not well represented. The NNCM

reports higher BACC over every surface type examined compared to both the ECM and

MVCM for the both the filtered and unfiltered datasets. The most notable improvement

from the NNCM occurs over sea ice, snow, and permanent snow during both day and night.

McNemar’s test (McNemar, 1947) is applied to the NNCM and the best operational model

(either ECM or MVCM) for each category in both tables with the null hypothesis that there

is no difference in predictive performance between the two models. We reject the null

hypothesis with a p-value less than 0.001 in every comparison of the NNCM and the best

operational model.

In a few cases, there are instances where one operational model has a higher TPR or

TNR value than the NNCM for a particular surface type. We find that that when either

the ECM or MVCM has a larger TPR value, it is often at the expense of a very low TNR

value (and vice-versa for low TPR and high TNR). One notable example of this is nighttime

sea-ice where the ECM has a TPR of 93.3% and a TNR of 36.6% in the analysis of the

unfiltered data (Table 1.6). Another is nighttime permanent snow cover where the MVCM

has a TPR of 43.6% and a TNR of 92.2%. The NNCM often has the most similar TPR and

TNR values. However, this is not always the case. The largest TPR/TNR disparity for the

NNCM is over nighttime water where it has a TPR of 93.6% and a TNR of 79.2%. This is a

category where the MVCM has a smaller disparity between TPR and TNR, but still overall

lower BACC than the NNCM. Generally when a model has a large disparity between TPR

and TNR, that is an indicator of severely over-predicting one of the two classes.

Cloud detection ability relies on many factors including the underlying surface and



25

the characteristics of a given cloud. Clouds with low optical depth may have only a small

impact on the top-of-atmosphere radiation observed by the imager. Similarly, clouds that are

close to the surface, even if they are optically thick, may be difficult to identify due to low

thermal contrast with the surface. We calculate the TPR for all collocations as a function of

cloud-top pressure and cloud optical depth as estimated from CALIOP (Fig. 1.4).

As expected, all cloud masks struggle with the identification of clouds that are optically

thin and clouds that are close to the surface. The NNCM has the largest TPR values across

all cloud-top pressures and optical depths with a few exceptions. In the unfiltered dataset

during the day, the MVCM has the highest TPR values for clouds with tops lower than

850 hPa. For the same cloud-top pressures, the NNCM has the highest TPR in the filtered

dataset. This may indicate that the MVCM is better able to discriminate small clouds that

are close to the surface. However, when these clouds are removed, the NNCM detects a

larger portion of the remaining clouds at all cloud-top pressures. During the night, the

MVCM severely underestimates cloud cover for all cloud-top pressures lower than roughly

350 hPa. This is consistent with the overall lower mean cloud fraction for nighttime scenes

reported in Fig. 1.3. When considering optical depth, the NNCM consistently has a larger

TPR for all values during the day and night for the filtered dataset. This is also true for the

unfiltered dataset with one exception where it is competitive with the MVCM at optical

depths less than 0.2 during the day.

There are some differences between Fig. 1.4 and Tables 1.5 and 1.6 that may seem

unintuitive. For example, the ECM has much higher TPR during the night compared to the

MVCM for all optical depths and all cloud-top pressures. However, its BACC values for all

nighttime collocations is slightly less than that of the MVCM. In this case it is helpful to
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remember that BACC accounts for both clear and cloudy scenes, and weights each class

equally. TPR only accounts for the proportion of clouds correctly identified. The MVCM

results in the TPR analysis of Fig. 1.4 appear to be to due to its tendency to underestimate

cloud cover during the night over certain surfaces.

We also investigate the TPR of the three cloud masks as a function of cloud type (Fig.

1.5). The cloud types are obtained from the 1 km CALIOP Cloud Layers product. Overall,

the NNCM reports the highest TPR for most cloud types. One exception is the broken

cumulus cloud type in the unfiltered dataset for which the MVCM has the highest TPR.

This difference for broken cumulus clouds implies that the NNCM has relatively worse

performance in fractionally cloudy scenes compared to the MVCM. While these differences

are fairly small, they may be indicative of a much larger difference in skill due to the relative

unreliability of the unfiltered collocations. When examining the filtered dataset results

for these same clouds, we see that the NNCM has the highest TPR. This suggests that the

NNCM and the ECM are only better at detecting broken cumulus when they occupy a

substantial horizontal area. When there is considerable fine-scale spatial variability, such as

in the unfiltered dataset, these results suggest that the MVCM is the most likely to correctly

detect a cloud. Besides the broken cumulus cloud type, the NNCM has the highest TPR

for both the filtered and unfiltered collocations. The largest differences are observed when

comparing cloud masks for the transparent cloud types. Almost no differences are observed

for deep convection which are likely optically thick and have high altitude cloud-tops.

As discussed previously, large TPR values do not necessarily indicate skilful models

since they can be obtained by over predicting the positive class. The mean cloud fraction

values from Fig. 1.3 offer some evidence that this is not the case for any of these cloud masks
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in most scenarios. To add additional context, we plot the receiver operating characteristic

(ROC) curves under various geographic and solar illumination conditions (Fig. 1.6). The

ROC curve of each cloud mask depicts the TPR and false positive rate (FPR) over a varying

threshold applied to their class probabilities. The NNCM and ECM both natively output

cloud probabilities. The MVCM includes a clear-sky confidence estimate which we take

the compliment of. An ideal model has a high TPR with very low FPR. A random classifier

lies along the diagonal in the middle of a typical ROC plot where TPR is equal to FPR (not

shown due to our choice of x and y axis limits).

Figure 1.6 indicates that the NNCM can obtain higher TPR for any specified FPR in

every scenario examined. This is true for both the filtered and unfiltered datasets. This

result illustrates that the larger TPR values reported by the NNCM are not strictly due to

the larger mean cloud fraction compared the MVCM. In addition to Tables 1.5 and 1.6,

Fig. 1.6 implies that most of the improvement by the NNCM comes from the high latitudes

during the night, but small improvements can still be observed elsewhere. In every scenario

the unfiltered results are worse than those of the filtered datasets. The largest discrepancy

between the filtered and unfiltered datasets occurs in the low-latitudes over the ocean. This

is likely due to the prevalence of small broken cumulus clouds that are mostly removed

from the unfiltered dataset.

There are a few situations where the actual TPR and FPR of the models (marked by the

colored circles in Fig. 1.6) are in unintuitive locations on the ROC curve. The ECM’s FPR

is larger than 40% for nighttime water scenes at the middle and high latitudes (not shown

due to our choice of x-axis limits). We expect that this is related to the high mean cloud

fraction over these regions measured by CALIOP. Given that the naïve Bayesian models
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behind the ECM require an initial guess, it is likely that the ECM is relying heavily on

climatology in regions where cloud masking is difficult from infrared observations. Overall,

it seems that the locations on the ROC curve of the actual TPR and FPR of the NNCM

are related to the mean cloud fraction of the different regions. This is particularly true for

nighttime scenes, where statistical models may rely more heavily on the background mean

cloud fraction. More cloudy regions such as middle and high latitude nighttime water (with

cloud fractions of roughly 79%) have larger FPR. Conversely, nighttime low-latitude land

(with a cloud fraction of 50%) has a much lower FPR. Applications that require specific

TPR or FPR from a cloud mask could tune the thresholds applied to the cloud probabilities

to reach their desired values indicated by the ROC curves.

Next we examine the performance as a function of geographical region. The mean ACC

on the filtered testing dataset is calculated on a 5 by 5 degree grid (Fig. 1.7). McNemar’s test

is used to test the differences in model performance between the NNCM and each operational

model at every grid point. Only points with significant differences in model performance

(p-values less than 0.001) are shown (Fig. 1.7.d, Fig. 1.7.f). Overall, the NNCM appears

to be the least sensitive to latitude. Most large differences between the NNCM and the

operational models occur over high latitude land. In particular, the NNCM shows large

improvement (10-20% difference) over North America, Greenland, Northeastern Asia, and

Antarctica over both the MVCM and ECM. Only small improvement (0-10% difference) is

observed over the ocean at low and middle latitudes compared to the MVCM. The NNCM

shows mixed results compared to the ECM in tropical ocean. A large contribution to the

poor performance of the MVCM in the Arctic and Antarctic is likely due to the severe

underestimation of cloud cover observed during the night at high latitudes.
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Similarly, we calculate the mean BACC on the same grid in Fig. 1.8 using the filtered

testing dataset. The BACC values are somewhat noisier since areas with extremely high

cloud fraction depend largely on the correct identification of a few cloud-free CALIOP

profiles. An example of this is over the Southern Ocean, where the ECM has a large disparity

between ACC (Fig. 1.7.e) and BACC (1.8.e). A slight tendency to overestimate cloud cover

for this region yields very large differences to the NNCM (Fig. 1.8.f). Besides this example

and some areas where the MVCM improves upon the NNCM in the Southern Ocean, the

results are largely similar to those of Fig. 1.7.

All of the previous analyses in this work rely heavily on an individual cloud mask’s

effective definition of cloud. A difficulty with comparing different clouds masks is that the

definition of a cloud is somewhat subjective at low optical depths and perhaps depends on

the particular application. It is plausible that each cloud mask may be more effective at

discriminating clouds around a certain optical depth threshold. Thus, a reasonable argument

based on the reported global mean cloud fractions in Fig. 1.3, and the BACC values in

Tables 1.5 and 1.6, is that the MVCM, due to its lower global mean cloud fraction, may only

be sensitive to clouds with slightly larger optical depths compared to the NNCM and ECM.

In order to further probe the differences in these cloud masks, we recalculate BACC after

removing clouds below an increasing lower optical depth threshold from our testing dataset

(Fig. 1.9). The aim of this analysis is to understand how the optical depth of a cloud impacts

its detectability by each approach, and identify if certain cloud masks perform better if we

remove clouds with trivially low optical depths. Even if two cloud masks are developed

around slightly different optical depth-based definitions of a cloud, we can reasonably expect

their BACC values to converge when clouds with optical depths above both thresholds are
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removed. As expected, when optically thin clouds are removed from our testing dataset, the

BACC of all the cloud masks is improved. Consistent with Fig. 1.6, the filtered dataset has

higher BACC for all scenarios. The NNCM reports the highest BACC across all land/water,

day/night, and latitude combinations examined with a few key exceptions. In low-latitude

nighttime water scenes (Fig. 1.9.j), the ECM has larger BACC for every cloud optical depth

threshold in the unfiltered dataset, but more similar values in the filtered dataset. In daytime

land scenes at low latitudes (Fig. 1.9.a), the ECM has larger BACC values above an optical

depth threshold of roughly 0.4 for the unfiltered dataset, but has lower BACC values at

most optical depths for the filtered dataset. The fact that the NNCM BACC values are still

equal to or larger than the other cloud masks for high optical depth clouds in most scenarios

suggests the NNCM is overall more skillful in cloud detection regardless of a reasonable

optical-depth based definition of a cloud. Because of this, we can infer that improvements

in BACC by the NNCM in Tables 1.5 and 1.6 are not solely due to discrepancies in the

detection of optically-thin clouds.

It may be initially unintuitive why some of the curves in Fig. 1.9 vary so little with the

removal of optically thin clouds. This is partially due to the choice of BACC as our primary

performance metric, but it is also representative of the fact that cloud optical depth is not the

only variable controlling the detectability of a cloud. Thermal contrast with the surface also

plays a significant role. Often, this can be analysed by examining performance of a given

cloud mask as a function of both optical depth and cloud-top height. However, this may be

misleading where clouds in inversion layers may be warmer than the underlying surface.

To examine the approximate impact of thermal contrast with the surface, we calculate

ACC as a function of the difference between the VIIRS M15 measurement (10.8 µm) and the
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surface temperature obtained from Global Forecasting System (GFS) twelve-hour forecasts

made every six hours (Fig. 1.10). These surface temperatures are matched to VIIRS

observations by linearly interpolating in space and time from the preceding and subsequent

GFS forecasts. Given the spatial and temporal resolution of the GFS products, these should

only be interpreted as very rough estimates of the surface temperature. The differences are

calculated after the removal of clouds below two different cloud optical depth thresholds:

0.3, and 3.0. As expected, all cloud masks perform well where the 10.8 µm measurement

is significantly colder than the surface. The performance of all models decreases as the

VIIRS 10.8µm brightness temperatures become more similar to or larger than the surface

temperature. Figure 1.10.b illustrates that even for optically thick clouds, the performance

of both operational models is largely dependent on thermal contrast with the surface. The

NNCM appears to be more robust to scenes where the 10.8 µm measurement is similar to

or warmer than the surface. This is surprising given that the NNCM is not supplied with

any information about surface characteristics other than latitude and whether it is viewing a

land or water surface.

Uncertainty Assessment

Class probabilities produced by machine learning models are often used to obtain

uncertainty estimates. While these values are typically not the same as true uncertainties,

they can be useful for interpreting model output. For binary classification models, an

approximation for uncertainty can be usually obtained by examining the distance from the

decision threshold. These uncertainty estimates are generally unreliable when predictions

are made on inputs that are outside the distribution of the original training dataset. With this
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significant caveat in mind, we calculate the ACC with respect to the cloud probabilities of the

NNCM and ECM, as well as the clear-sky confidence from the MVCM (Fig. 1.11). A model

with a cloud probability threshold of 0.5 is perfectly calibrated if its predictions lie along

the line where ACC = min(ŷ,1 − ŷ) where ŷ is the scalar predicted cloud probability. The

MVCM appears to follow a different convention with a decision threshold of 0.95 since that

is where the minimum accuracy is reached with respect to the MVCM clear-sky confidence.

Overall, the NNCM appears to be the best calibrated with the ACC on the unfiltered

collocations closely following the expected values from a perfectly calibrated model. It is

slightly over-confident when predicting cloud probabilities for clear-sky cases in the range of

0.1 to 0.4. The ECM appears to be overconfident for the majority of cloud probability values.

The assessment of MVCM accuracy as a function of clear-sky confidence is somewhat noisy,

but could be attributed to the extremely low number of values in the calculated intervals.

Despite the minor differences, all cloud masks examined here have accuracies that vary in

an intuitive way with their predicted cloudy or clear-sky probability values. The differences

among them can be mostly attributed to how well their class probabilities correspond to a

particular level of accuracy. As a result, we expect that these values can be used to convey

the relative uncertainty in estimating which imager pixels the CALIOP cloud products might

determine to be cloudy. However, it remains to be demonstrated if accurate uncertainties

in predicting CALIOP cloud detection translate well to accurate uncertainties outside of

CALIOP collocations.
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Cloud Detection Consistency

Evidenced by much of the previous analysis, the detectability of a cloudy pixel by a cloud

masking algorithm can depend on a number of factors including surface characteristics, solar

illumination, cloud optical depth, cloud-top height, thermal contrast with the surface, and

the algorithm itself. The variation of BACC, ACC, TPR, and FPR across these conditions

suggest that clouds of a fixed optical depth may be more likely detected over certain surface

conditions or time of day. This is potentially problematic and conducive to spatial and

temporal artifacts in cloud amount analyses. Consider for example, a cloud of fixed low

optical depth advected sequentially over a cold land surface, a relatively warm ocean surface,

and sea ice. Regardless of the overall accuracy of a cloud mask or effective definition of a

cloudy scene, an algorithm with a varying TPR over these surface types could produce spatial

artifacts related to these surfaces. Considering that solar illumination may change during this

time further complicates this example and could produce unrealistic cloud amount variability

through time. In many scenarios, this is unavoidable due to the limitations of the satellite

instrument. However, we argue that a desirable quality of a cloud mask is consistency in

TPR across varying surface types and solar illumination conditions, and that, ideally, cloud

detection should be dependent on characteristics of the cloud and not characteristics of the

surface or solar illumination. We expect that examining TPR differences between these

conditions at fixed cloud optical depths could help reveal artificial spatial and temporal

variability in cloud amount analyses.

To investigate this concern, we calculate the TPR for clouds above an increasing optical

depth threshold. Then, we find the difference in TPR across daytime, nighttime, land, and

water for three latitude bands (Fig. 1.12). An important consideration for Fig. 1.12 is that
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a cloud mask can have low accuracy, but also low TPR differences if it makes consistent

predictions with respect to cloud optical depth across the conditions examined.

In general, as the lower optical depth threshold increases, TPR differences decrease

for all cloud masks with a few exceptions. The NNCM has TPR differences less than or

equal to 5% for all scenarios examined except for the difference between nighttime water

and nighttime land, and the difference between daytime land and nighttime land at the high

latitudes. In both instances, the differences converge to less than 5% at optical depths greater

than 1. All cloud masks struggle with consistency at high latitudes and for optically thin

clouds.

The ECM shows strong consistency in TPR between daytime and nighttime water at all

latitudes for both datasets. However, it struggles in many other scenarios. In Fig. 1.12.d (low

latitude nighttime water and nighttime land), the ECM is the only mask with differences

greater than 5%. In Fig. 1.12.f (high latitude nighttime water – nighttime land) the ECM

has the largest TPR difference observed of roughly 28% for optically thin clouds.

The MVCM has the largest TPR differences in nine out of the twelve scenarios examined

in Fig. 1.12. In a few cases (Fig. 1.12.a, 1.12.b, 1.12.g) the large TPR differences converge

to zero at larger optical depths. However, in other cases, the large differences remain even

for optically thick clouds. This is especially true for daytime/nighttime consistency over

both land and water at high latitudes (Fig. 1.12.i, 1.12.l) where differences are larger than

10% for clouds with optical depths greater than 1.0.
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Regional Analysis

In order to give some context to the largest differences we have observed when validating

with CALIOP collocations, we perform a limited regional analysis comparing the NNCM and

the MVCM. We focus this analysis on Greenland because it is one of the worst performing

regions for both masks. We process every S-NPP VIIRS scene in 2019 where the nadir

VIIRS ground track comes within the bounding box of latitudes 60N to 80N and longitudes

70W to 20W. This results in a total of 4,412 six-minute VIIRS scenes. Due to the large

amount of scenes, we additionally subsample every fifth pixel from every fifth scanline.

For the NNCM and the MVCM we calculate the mean cloud fraction for the region 58N to

84N, and 80W to 10W using a grid size of 0.5 degrees latitude and 1 degree longitude (Fig.

1.13.a, 1.13.b).

Consistent with the CALIOP validation, we observe large differences over the Greenland

land mass (Fig. 1.13.c). The NNCM predicts 10-25% higher cloud fraction over Greenland

varying with exact location. Differences over the ocean to the southeast of Greenland

are negative and fairly small. However, the ocean to the north and west of Greenland

have large positive differences similar to those over Greenland itself. Based on the spatial

characteristics of the mean MVCM cloud fraction over the ocean, we hypothesize that these

differences may be a result of sea ice cover. A similar result was found previously in Liu

et al. (2010), where MODIS cloud detection errors related to the presence of sea ice were

suggested to contribute to large errors in cloud fraction trends.

Focused regional comparisons between imagers and CALIOP can be difficult due to the

relative sparsity of CALIOP observations in small geographical regions. A domain-wide

averaged cloud fraction comparison between the two imager cloud masks and CALIOP is
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subject to a large amount of error due to the differences in spatial sampling and observation

times. We calculate a domain-wide average of cloud fraction for CALIOP and the two cloud

masks and plot the 31-day moving average as a function of time (Fig. 1.13.d). To account for

some of the differences in sampling, this average only includes grid points from the NNCM

and MVCM for which CALIOP has sampled on the same day. This effectively removes

the impact of differences in spatial sampling, but ignores differences in temporal sampling.

Thus, we should still not expect either the MVCM or the NNCM to follow the CALIOP 1

km or 5 km products closely. When calculating the mean cloud fraction, individual values

on the regular latitude/longitude grid are weighted to account for differences in surface area

between locations.

The largest differences occur in northern hemisphere winter, with better agreement

between the MVCM and NNCM occurring during northern hemisphere summer. This

suggests that the MVCM’s tendency to underestimate cloud cover during conditions with

no solar illumination heavily contributes to the spatial differences observed in Fig. 1.13.c.

Similarly, the magnitude of the seasonal cycle in the MVCM is likely exaggerated due

to variation of solar zenith angle throughout the year. Both cloud masks also show very

different shapes to the seasonal cycle even when ignoring the overall differences in mean

cloud fraction. Despite differences in temporal sampling, the NNCM shows somewhat

similar variability to both CALIOP products. Overall, the NNCM shows mean cloud

fractions more similar to the 5 km CALIOP product despite being trained with labels from

the 1 km product. This is not a surprising result since the NNCM is a statistical algorithm

and is incentivized to predict the majority class (cloudy) in uncertain conditions when both

classes are given equal weight. The 5 km CALIOP product likely has a larger mean cloud
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fraction due to its ability to detect clouds with low optical depths. Of the two cloud masks,

the NNCM appears to give a more realistic assessment of cloud cover variability in this

analysis and more closely aligns with that of CALIOP.

1.5 Discussion

There are few common themes in much of the analysis done in section 1.4. The BACC

calculated over global averages of a few surface types suggests that the NNCM is better at

discriminating cloudy from cloud-free scenes in most scenarios. Further analysis shows

that a large majority of this improvement comes from collocations located at the middle and

high latitudes. According to the CALIOP collocations, the ECM and NNCM cloud masks

appear relatively comparable over low-latitude land and ocean with the MVCM trailing

slightly behind both in this region. The ECM appears slightly more capable of identifying

low-level small clouds in the unfiltered dataset in low-latitude nighttime scenes over water.

The NNCM’s improvement at higher latitudes raises some questions on its dependence on

latitude particularly since it is the only model that uses this information directly in its inputs.

To test this dependency, we retrained and evaluated the NNCM after removing latitude,

solar zenith angle, sun glint angle, and the land/water mask. The largest change in BACC

was a decrease of -0.5% over nighttime water, and all other surfaces changed by less than

0.2%. Considering these results, it is probable that the NNCM depends on latitudinal mean

cloudiness in some capacity over water (similar to the ECM over the Southern Ocean).

However, it is difficult to assess how this information is utilized and whether it is serving a

purpose similar to that of a climatological first guess, or if it is changing the usage of other
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observations.

Despite training using an unfiltered dataset that contains fractionally cloudy pixels

identified by CALIOP, the NNCM still struggles in fractionally cloudy scenes. This is

likely due to a combination of noisy labels from CALIOP in these conditions and the low

contrast with the underlying and surrounding surface. Broken cloudiness is a consistent

problem in using CALIOP as a reference. These clouds pose a significant challenge to cloud

masking in general, but are particularly difficult to handle when the corresponding CALIOP

profile is not fully representative of its collocated imager pixel. Future efforts to provide a

high-quality, fine-resolution, globally-distributed cloud labels could prove extremely useful

to solve these issues. Our choice of training on an unfiltered collocation dataset was made

to avoid any bias with regards to the spatial characteristics of cloud cover. We expect that

filtering out spatially variable clouds from the training dataset would result in an even worse

characterization of small clouds by the NNCM. Despite training on a relatively unreliable

collection of CALIOP collocations, we report much higher BACC for the vast majority of

scenarios, especially in homogeneously cloudy scenes represented by the filtered testing

dataset.

It should also be noted that the decision to use CALIOP as a reference and the lack of

filtering applied to the training dataset affects how the NNCM uncertainty estimates can be

interpreted. Reported uncertainties by the NNCM should not be purely attributed to the

ability of the model to detect clouds based on spectral variability alone. Since we include

neighboring pixels in the inputs, spatial variation in VIIRS channels is also a contributor.

Additionally, these uncertainty estimates are also a function of how representative CALIOP

profiles typically are of a given pixel. This suggests that uncertainties associated with regions
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of broken clouds are elevated due to the difficulty of obtaining mutually representative

collocations between CALIOP and VIIRS.

There are many areas for improvement in the NNCM approach. For instance, we included

all 16 moderate resolution channels in our algorithm. It is plausible that some channels are

not especially useful in cloud detection, or the useful information they provide to the task is

redundant among other channels. Pruning inputs to the model could ultimately speed up

processing and could reduce the likelihood of over-fitting. Future work could investigate the

benefit of including the 375 m I-band measurements from VIIRS. We did not include I-band

measurements, since obtaining these observations more than doubled the processing time

for creating the collocation dataset, training the model, and making predictions. Sub-pixel

information from the I-band measurements could likely help identify small cloud features.

However, we expect that the poor representation of small clouds by the CALIOP/VIIRS

collocations would severely limit the usefulness of their incorporation. Further work is

needed to in order to properly assess how I-band measurements could be used to maximize

their value in cloud property algorithms trained with CALIOP.

Despite the large increase in BACC made by our NNCM approach, there is still room for

improvement particularly during the night. One potential solution might be the incorporation

of VIIRS/CrIS fusion channels into the inputs of the final NNCM model. Similar to the

usage of I-band measurements, this may increase the prediction time. However, the spectral

regions covered by the I-bands are already well-represented in the moderate resolution

channels. The VIIRS/CrIS fusion channels represent spectral regions not covered in the

native VIIRS channels such as those with significant carbon-dioxide (MODIS bands 33-36)

, water vapor (MODIS bands 27 and 28), and ozone (MODIS band 30) absorption. Thus,
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the increase in cloud detection accuracy may be worth the trade-off of increased prediction

time associated with their inclusion. However, an added difficulty is that the fusion channel

estimates are made from relatively coarse resolution CrIS channels. This could negatively

impact cloud detection for fractionally cloudy pixels to an even greater degree.

Our approach currently includes very little ancillary data: only a VIIRS-derived binary

land/water mask. The MVCM uses several, including surface temperatures, sea ice, snow

cover, and Normalized Difference Vegetation Index maps. The ECM also includes surface

temperatures, sea ice, snow cover, tropopause temperatures, and clear-sky estimates of

many channels using radiative transfer models. Anecdotally, we notice that some spatial

artifacts we have observed in the two operational cloud masks appear to be related to the

relatively coarse resolution of the ancillary datasets. Early experiments with the neural

network lead us to believe that including surface temperature increased the frequency of

spatial artifacts in its output. This motivated our decision to initially not include information

such as surface temperatures in our approach even though it lead to substantial increases

in cloud detection performance estimated by CALIOP collocations. The relatively coarse-

resolution of the ancillary data might cause issues around boundaries of surface types

or around large horizontal gradients in surface temperature. This mischaracterization of

the surface condition could result in errors in cloud detection if a given model is highly

dependent on this information. This is potentially one of the explanations for the disparity

in performance in instances of low thermal contrast with the surface. We leave it to future

work to investigate how to include coarse-resolution ancillary data in the neural network

without increasing the prevalence of spatial artifacts in cloud masking output.

For all scenarios examined in Fig. 1.12 we conclude that the NNCM is the most consistent
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in identifying clouds across various geographical, solar illumination, and surface conditions

while controlling for cloud optical depth. There are several reasons why the NNCM model

might be successful in this regard. The ECM and MVCM both apply different tests based

on surface condition and solar zenith angle. The ECM, for example, is a collection of naïve

Bayesian models trained for different surface types. This a very intuitive approach, but in

practice requires partitioning collocation datasets according to surface type and reduces the

number of collocations that can be used for training each model. Similarly the MVCM uses

different decision pathways and restricts or requires usage of certain inputs accordingly. We

hypothesize that training a only single model (rather than multiple), and instead providing

the land/water mask and solar-zenith angle as inputs has contributed to its consistency in

cloud detection under these varying conditions.

In one of the worst performing regions for all cloud masks, we observe very substantial

differences in mean cloud fraction for 2019 across both space and time. These results

demonstrate how differences in TPR of a cloud mask over varying surface and illumination

conditions could potentially contribute to very different spatial and temporal variability.

Because of this, we argue that TPR differences over varying surface and illumination

conditions could be useful metrics for identifying such issues in cloud mask development

and assessment. We suspect that this is a particularly important consideration for the use of

cloud masking approaches in climate records. For example, annual sea ice loss or trends in

seasonal snow cover could produce erroneous trends in cloud cover if a given cloud mask’s

TPR differs significantly to that of ice-free ocean or snow-free land.

We note several potential caveats in the assessment of the NNCM in addition to issues

with fractional cloudiness. One clear limitation with using CALIOP as a source for labels is
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the relatively narrow range of sensor viewing angle and solar illumination combinations.

We examined one specific example of this in sun glint and have limited, but not completely

removed, its adverse impact on cloud detection using pseudo-labeling. One disadvantage of

the pseudo-labeling approach, is that the associated uncertainty estimates lose much of their

meaning in domains where we exclusively train on pseudo-labels. We have attempted to limit

the impact of this issue by training the NNCM to estimate the class probabilities produced

by the pseudo-labeling model, and not the predicted class labels themselves. This approach

appears to be successful in preventing severe over-clouding of sun glint regions, but it can

only be expected to perform as well as a model that uses infrared observations exclusively.

There are very specific conditions in which the two operational masks outperform the

NNCM and it may be possible to use MVCM or ECM predictions as pseudo-labels to

address deficiencies in the NNCM if these conditions can be identified without the use

of CALIOP. We have not evaluated how the NNCM performs specifically in cloud-free

scenes with high aerosol loading in this analysis. We expect that the ability for CALIOP to

distinguish cloud from aerosol layers could add an another layer of difficulty in addition to

the ability of VIIRS observations to distinguish these features.

One source of bias in this assessment is our choice of using the 1 km CALIOP Cloud

Layers products in the vast majority of our comparisons. It is possible that some optically

thin clouds that are detected in the 5 km CALIOP product but are missed in the 1 km product

could be correctly identified by the imager cloud masks. This is plausible in conditions

such as daytime low-latitude ocean where a thin cirrus cloud has large thermal contrast with

the surface. We have not investigated this specific concern in this work due to the difficulty

of ensuring mutually representative collocations between the 5 km CALIOP product and
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the 750 m observations. It is possible that the slight overestimation in daytime mean cloud

fraction by the MVCM (Fig. reffig:fig03) could be due to the detection of clouds missed by

the 1 km CALIOP product. For purely statistical approaches, like the NNCM, it is difficult

to separate this possibility from that of over-predicting cloud fraction simply because cloudy

scenes are more common than cloud-free.

1.6 Conclusions

In this work, we examine the performance of a neural network cloud mask (NNCM)

for VIIRS that is trained with coincident CALIOP observations and compared it with

two operational cloud masks. Both the MVCM and ECM appear to be slightly better at

identifying small broken clouds than the NNCM. However, the NNCM outperforms both

operational masks in most other conditions. We observe particularly large improvement

at the middle and high latitudes during the night where the operational masks missed

substantial fractions of optically-thick clouds that were correctly identified by the NNCM.

We have ruled out the possibility that the improvement is due to disagreements in each

approach’s effective definition of a cloud. Furthermore, we find that uncertainty estimates

from the NNCM are well-calibrated and appropriately represent the ability to estimate

cloudy or cloud-free labels from CALIOP. When examining differences in true positive rate,

we find that the NNCM is the most consistent in identifying clouds of a fixed optical depth

when considering day/night and land/water conditions. A regional analysis over Greenland

for 2019 confirms that such differences could contribute to vastly different assessments of

the spatial and temporal variability of cloud cover over certain regions. Some issues with
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the global representativeness of VIIRS/CALIOP collocations are successfully mitigated

with a simple semi-supervised learning approach, but more work is needed in improving

detection of fractionally cloudy pixels by the NNCM.
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Band Spectral Range (µm) Units
M1 0.400 - 0.421 Refl.
M2 0.436 - 0.451 Refl.
M3 0.477 - 0.496 Refl.
M4 0.541 - 0.561 Refl.
M5 0.662 - 0.680 Refl.
M6 0.738 - 0.752 Refl.
M7 0.843 - 0.881 Refl.
M8 1.225 - 1.252 Refl.
M9 1.368 - 1.383 Refl.

M10 1.571 - 1.631 Refl.
M11 2.234 - 2.280 Refl.
M12 3.598 - 3.791 BT [K]
M13 3.987 - 4.145 BT [K]
M14 8.407 - 8.748 BT [K]
M15 10.234 - 11.248 BT [K]
M16 11.405 - 12.322 BT [K]

Table 1.1: The band, spectral range, and units of all sixteen moderate resolution VIIRS
channels. Each channel is expressed as a reflectivity (Refl.), or a brightness temperature
(BT).
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VIIRS/CrIS
Fusion Channel

Spectral Range of MODIS
Equivalent Channel (µm)

MODIS 27 6.535 – 6.895
MODIS 28 7.175 – 7.475
MODIS 29 8.400 – 8.700
MODIS 30 9.580 – 9.880
MODIS 31 10.780 – 11.280
MODIS 32 11.770 – 12.270
MODIS 33 13.185 – 13.485
MODIS 34 13.485 – 13.785
MODIS 35 13.785 – 14.085
MODIS 36 14.085 – 14.385

Table 1.2: The VIIRS/CrIS fusion channels used in the pseudo-labeling model. All channels
are expressed as brightness temperatures.
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Inputs NNCM Neural network
without pseudo-labels

Pseudo-labeling
model

M1-M13 X X
M14-M16 X X X

MODIS 27 - MODIS 36 X
| Latitude | X X X

Solar Zenith Angle X
Sun Glint Angle X

Land/Water Mask X X X

Table 1.3: Summary of the inputs included in the three neural networks used in this work.
See the main text for description of each model.
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Layer Group (LG) Layer Type Input Size Output Size
LG1 FC(200), Leaky ReLU, Dropout(2.5%) 180 (3x3x20) 200
LG2 FC(200), Leaky ReLU, Dropout(2.5%) 200 200
LG3 FC(100), Leaky ReLU, Dropout(2.5%) 200 100
LG4 FC(50), Leaky ReLU, Dropout(2.5%) 100 50
LG5 FC(25), Leaky ReLU, Dropout(2.5%) 50 25
LG6 FC(1), Sigmoid 25 1

Table 1.4: The architecture of the NNCM. LG refers to Layer Group and is used to describe
the collection of layers in each row. FC(x) refers to the fully connected layers where x is the
number of units in each layer. Similarly, Dropout(x) refers to the fraction of inputs which
dropout is applied.
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Figure 1.1: Spatial distribution of the unfiltered S-NPP VIIRS/CALIOP collocations for
the (a) training, (b) validation, and (c) testing datasets. Panel (d) indicates the seasonal
distribution of collocations for each unfiltered dataset. Note the difference in color bar limits
between (a), (b), and (c).
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Figure 1.2: Comparison of the neural network cloud mask without pseudo-labels (c),the
NNCM (d), the MVCM (e), and the ECM (f). Also shown are band M5 with a central
wavelength of roughly 0.67µm (a) and band M15 with a central wavelength of roughly
10.8µm (b).
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Figure 1.3: Mean cloud fraction for the 2019 unfiltered testing dataset. Each bar grouping
from left to right shows the value from the CALIOP 1 km product, the NNCM, MVCM,
and ECM. Time of day and surface categorizations are described in the main text.
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Figure 1.4: True positive rate (TPR) calculated as function of cloud-top pressure (a,b)
and optical depth (c,d) for daytime and nighttime collocations respectively. The grey bars
represent the fraction of cloudy 1 km CALIOP profiles. Only profiles with non-zero optical
depths are included in (c) and (d).
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Figure 1.5: The True Positive Rate (TPR) for various CALIOP cloud-feature types from the
1 km CALIOP Cloud Layers product. The order shown in the legend indicates the ordering
of the bars in each grouping.
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Figure 1.6: Receiver operating characteristic (ROC) curves for all three cloud masks. The
text above each subplot indicates the subset of collocations for which the curves are plotted.
Note that the x and y axis limits are somewhat atypical for ROC curve plots and are chosen
here to emphasize the differences between the masks and different datasets. The TPR and
FPR for the model using the standard threshold of 0.5 for the neural network and ECM, as
well as the integer cloud mask for MVCM are also shown with similarly colored circles.
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Figure 1.7: Geographic comparison of the ACC between the three cloud masks on the
filtered testing dataset. Each grid cell is 5 degrees latitude by 5 degrees longitude. The
gap in coverage over South America is due to the removal of low-energy laser shots from
the CALIOP datasets. Cells with less than 100 collocations are not shown in (a) or (c)-(f).
Differences are only shown where determined significant by McNemar’s test with p-values
less than 0.001.
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Figure 1.8: Same as Fig. 1.7 but all using BACC instead of ACC. Panel (b) has been replaced
with the 1 km CALIOP cloud fraction computed from the VIIRS/CALIOP collocations.



59

Figure 1.9: Balanced Accuracy (BACC) recalculated after removing clouds below a certain
cloud optical depth (COD) threshold. Tick marks on the neural network lines indicate
significant differences in performance between the neural network and the best operational
model using McNemar’s test with p-values less than 0.001. Note that the y-axis limits are
different for (l) compared to the other subplots.
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Figure 1.10: ACC calculated as a function of thermal contrast with the surface approximated
by the difference between VIIRS M15 (10.8 µm) and surface temperature in Kelvin. Each
subplot represents a set of collocations consisting of clear-sky scenes and cloudy scenes
with optical depths greater than 0.3 (a) and 3.0 (b).
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Figure 1.11: Uncertainty assessments for (a) the NNCM (b) the MVCM, and (c) the ECM.
ACC values (left y-axis) for cloud probability and clear sky confidence values are calculated
for bins of size 0.01. For (a) and (c) a perfectly-calibrated model is plotted with the grey
dashed line (see main text). Orange shading indicates the 99.9% confidence interval. Grey
bars indicate the fraction of collocations falling within each bin of width 0.01.
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Figure 1.12: TPR differences over combinations of land/water and day/night conditions.
The specific TPR difference and latitude is labeled at the top of each subplot. Note that the
y-axis limits are different for (f) and (l).
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Figure 1.13: Regional analysis of cloud fraction over Greenland. (a) and (b) illustrate the
mean cloud fraction for the NNCM and the MVCM for all selected VIIRS scenes in 2019.
(c) is the difference between (a) and (b). (d) is the domain-wide 31-day moving average of
grid points spatially matched with CALIOP (see main text for details).
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2 probing the interpretability of neural network

cloud-top pressure models for leo and geo imagers

2.1 Introduction

Cloud-top pressure (CTP) is a useful derived product for characterizing clouds and

their variability from satellite measurements. CTP can be used in combination with cloud

optical depth (COD) to distinguish cloud types such as convective cloud-tops, cirrus, and

stratocumulus (Jakob and Tselioudis, 2003). When applied to long-term imager records,

such an analysis can be used to identify changes in cloud type (Foster and Heidinger, 2014)

or to assess relationships among aerosol loading and cloud type (Oreopoulos et al., 2017).

CTP also has applications in downstream cloud products such as the cloud cover layers

(CCL) product relevant for aviation nowcasting (Seaman et al., 2017; Noh et al., 2017) and

the height assignment of derived motion winds (Daniels et al., 2012).

Several approaches have been developed to estimate CTP from imagers. Many physically-

based methods rely on differences between absorbing and non-absorbing infrared channels

or require the use of radiative transfer models. Early efforts include Chahine (1974) and

Smith and Platt (1978), which explore the use of CO2-absorbing channels. The Moderate

Resolution Imaging Spectroradiometer (MODIS) CTP products (Menzel et al., 2008) employ

a similar CO2-slicing approach. Each MODIS CO2 channel has differing amounts of CO2

absorption, so each is sensitive to different levels of the atmosphere. As a result, differences

among these channels can be used to infer cloud-top height and pressure.

Inoue (1985) used a split window (11-µm and 12-µm) method to obtain cloud-top tem-
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perature for cirrus clouds. Heidinger and Pavolonis (2009) used a similar approach for

estimating phase, temperature, and COD for cirrus clouds, relying on multiple channels

within the 8-µm to 13-µm region. Specifically, their approach relies on an optimal estima-

tion methodology (Rodgers, 1976) for the Advanced Very High-Resolution Radiometer

(AVHRR). This is later formalized as the Algorithm Working Group (AWG) Cloud Height

Algorithm (ACHA) for use in operations for the Advanced Baseline Imager (ABI) and

Visible Infrared Imaging Radiometer Suite (VIIRS; Heidinger and Li 2017). Optimal cloud

analysis (OCA; Poulsen et al. 2012) also uses an optimal estimation method for several

cloud properties, including CTP. OCA additionally has the ability to estimate properties of

multiple clouds in multi-layer scenes (Watts et al., 2011).

Machine learning (ML) has recently gained popularity in atmospheric science and remote

sensing. ML approaches can often be successful in prediction tasks due to their ability to

exploit complex relationships between multiple features (predictors) and the corresponding

label (predictand). Some methods can rely heavily on feature-engineering, which is the

practice of transforming features to make the relationship with the label more suitable for a

given model. Neural networks (NNs) are less dependent on feature-engineering due to their

use of successive nonlinear operations. NNs have proven useful in a variety of atmospheric

science applications, including automated identification of frontal boundaries (Lagerquist

et al., 2019), detection of severe convection (Cintineo et al., 2020), and estimation of

microphysical properties of snowfall (Chase et al., 2021).

NNs have also been applied to CTP estimation. Kox et al. (2014) used a simple NN

trained with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) to detect

and estimate COD and cloud-top altitude of cirrus clouds with the Spinning Enhanced
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Visible and InfraRed Imager (SEVIRI). Håkansson et al. (2018) also trained an NN with

CALIOP to estimate CTP from MODIS measurements. They compared their NN results

with operational algorithms and found large improvement even when using a small subset

of channels. Pfreundschuh et al. (2018) extended this work to estimate uncertainties in CTP

from NN approaches with a quantile loss function.

Interpretability is a major concern when choosing an NN to solve a given task. Methods

like CO2-slicing, ACHA, and OCA are well-grounded in the physics of radiative trans-

fer. One can often attribute the predictions from these methods to physical aspects of

the observations and environment. It can be difficult to explain predictions NN that has

successive nonlinear operations. Several efforts have been made to promote the use of

various interpretation methods in applications of ML to atmospheric science (McGovern

et al., 2019).

We quantify the importance of each channel in NN CTP models for one low-earth

orbiting (LEO; VIIRS) and one geostationary (GEO; ABI) imager. These models are

trained to match estimates of CTP from CALIOP. Our NN approach largely builds off

that of Håkansson et al. (2018) and Pfreundschuh et al. (2018). We first perform a short

validation for both VIIRS and ABI and include a comparison with ACHA. We apply several

approaches to offer varied perspectives on the importance of the infrared channels used in

these models. The overall goal of this analysis is to enhance our understanding of what

information is most useful for CTP estimation and is motivated by the substantial increase in

performance offered by NNs over more traditional methods. We view model interpretability

as an important consideration for applications of operational CTP products. Furthermore,

we hope to inform cloud property algorithm development and the channel selection of
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instruments focused on remote sensing of cloud properties.

2.2 Data

CALIOP

CALIOP (Winker et al., 2009) is a spaceborne near-nadir-pointing lidar, measuring

backscatter intensity at 1064-nm and 532-nm. CALIOP is sensitive to optically thin clouds,

making it a suitable source for the validation of several cloud properties from passive

imagers. A critical choice in this work is whether to use the 1-km or 5-km CALIOP cloud

layer products (Vaughan et al., 2009) to train the NN models. The 1-km product has a

spatial resolution most commensurate with both imagers, but the 5-km product has greater

sensitivity to cirrus clouds. Thus, there is a trade-off between the representation of fine-scale

variability in CTP and the detection of optically thin clouds. Another factor is that COD

is only calculated for the 5-km product and will only be representative for clouds detected

at 5-km. Cloud-top height estimates are required for the parallax correction of imager

measurements, meaning that the choice of CTP product affects the selection of collocated

imager pixels. We decide to use the 1-km product for the training and validation of the

neural networks, since passive imager measurements are likely not sensitive to optically

thin clouds detected by the 5-km product that are missed by the 1-km product.

VIIRS

VIIRS is a LEO imager on the Suomi-National Polar Orbiting Partnership (S-NPP)

and NOAA-20 satellites. VIIRS has a nadir spatial resolution of 750-m for 16 moderate-
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resolution channels that span visible, near-infrared, and infrared wavelengths. We find

coincident observations between S-NPP VIIRS and CALIOP by nearest-neighbor matching

of imager pixels and lidar profiles that occur within 2.5 minutes. A parallax correction

(Holz et al., 2008) is applied, using the VIIRS viewing geometry and the cloud-top altitude

reported from CALIOP.

Models trained on coincident observations between VIIRS and CALIOP can have

generalization issues related to viewing angles and solar geometry (White et al., 2021).

In this dataset, high latitude collocations are only made at relatively low VIIRS viewing

angles. Sun glint poses a significant problem since it is never seen in our collocation dataset

(White et al., 2021). To reduce the impact of this issue, we do not include channels that have

solar contributions which limits the channels to those with central wavelengths of 8.6-µm,

10.8-µm, and 12.0-µm.

In addition to the native VIIRS channels, we also include information from the VIIRS/Cross-

track Infrared Sounder (CrIS) fusion channels (Weisz et al., 2017). These are estimates of

absorbing channels created from coarse-spatial-resolution measurements from CrIS that

are convolved to match the spectral response functions of MODIS. The fusion channels are

mapped to the same resolution as the VIIRS M-bands by exploiting the variability in the

native VIIRS infrared channels. Others have found improvement in CTP estimates when

including the fusion channels (Li et al., 2020) or CrIS information (Heidinger et al., 2019).

They are included here since they represent spectral regions not represented in native VIIRS

observations. All bands from VIIRS and the fusion channels used in this work are shown in

Table 2.1.

We partition our VIIRS/CALIOP collocations into a training dataset from 2016 and
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Source/Band Central Wavelength
VIIRS - M14 8.6-µm
VIIRS - M15 10.8-µm
VIIRS - M16 12.0-µm

VIIRS/CrIS fusion – MODIS 27 6.7-µm
VIIRS/CrIS fusion - MODIS 28 7.3-µm
VIIRS/CrIS fusion – MODIS 30 9.7-µm
VIIRS/CrIS fusion – MODIS 33 13.3-µm
VIIRS/CrIS fusion – MODIS 34 13.6-µm
VIIRS/CrIS fusion – MODIS 35 13.9-µm
VIIRS/CrIS fusion – MODIS 36 14.2-µm

Table 2.1: Central wavelengths of the infrared channels included in the VIIRS models. The
left column indicates whether channels are native VIIRS measurements or derived from the
CrIS. Note that fusion channels are named after MODIS bands since they are designed to
match spectral response functions of that instrument.

2018, a validation dataset from 2017, and a testing dataset from 2019. The spatial and

seasonal distribution of collocations are shown in Figure 2.1. Differences in the spatial

distribution between 2019 and the previous years are due to CloudSat and CALIOP’s exit

from the A-Train (Braun et al., 2019). Gaps in these datasets are primarily due to the

unavailability of CALIOP data and a gap in some CrIS channels from April 2019 to June

2019.

ABI

ABI (Schmit et al., 2017) is an imager on the Geostationary Operational Environmental

Satellite (GOES) -16 and -17 platforms. The infrared channels considered in this work have

a nadir spatial resolution of 2-km. The temporal resolution of ABI full-disk images can

vary depending on the scan mode. We use the GOES-16 ABI data from 2019, in which the
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ABI Band Central Wavelength
8 6.2-µm
9 6.9-µm

10 7.3-µm
11 8.4-µm
12 9.6-µm
13 10.3-µm
14 11.2-µm
15 12.3-µm
16 13.3-µm

Table 2.2: Central wavelengths of the infrared channels included in the ABI models.

temporal resolution is mainly ten minutes.

The GOES-16 ABI and CALIOP collocations are found in a similar way to those of

VIIRS and CALIOP. One difference is that we relax the time difference requirement to five

minutes. We make this change since the nadir resolution of ABI is more than twice as large

as the VIIRS M-bands, and it is less likely that a cloud observed by CALIOP is advected

out of the matched imager pixel when the area observed by the pixel is larger. In our models

we include all ABI channels without solar contributions, which includes bands 8 through

16 (Table 2.2).

The collocations with CALIOP are partitioned into a training dataset from January 2019

through June 2019, a validation dataset from July 2019 through September 2019, and a

testing dataset from October 2019 through December 2019 (Figure 2.2).

NWP Data

Numerical weather prediction (NWP) model output fields are included in our NNs in

order to characterize the environment of observed clouds. We use the 6-hour forecast from
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the 6-hourly Climate Forecast System (CFS) 0.5-degree output (Saha et al., 2014) and match

each set of CALIOP collocations by linearly interpolating in space and time. The fields

used are the temperature and pressure at the surface and tropopause, total precipitable water,

and the temperatures at pressure levels of 20 hPa, 100 hPa, 300 hPa, 500 hPa, 700 hPa, and

900 hPa.

The information contained in many of the infrared channels used is closely related

to cloud-top temperature for opaque clouds. If temperature can be determined, then an

NWP temperature profile can be used to infer the pressure level. Most clouds occur in

the troposphere so the temperature and pressure of the tropopause and the surface might

serve as upper and lower bounds. Total precipitable water might serve as an indicator for

optically thick cloud cover, and provide information on the expected amount of water vapor

absorption. We experimented with including relative humidity, and a greater number of

pressure levels (not shown). These did not substantially help model performance so they

were not included. Our resulting temperature profile has a similar sparsity to Håkansson

et al. (2018).

2.3 Neural Network Training and Validation

Neural Network Details

We use neural network with a quantile loss function that draws from Pfreundschuh et al.

(2018) which demonstrated the ability of quantile regression NNs to estimate uncertainties

for CTP. The quantile loss is shown in Eq. 2.1 where L is the loss for a prediction ŷ for

quantile τ and where y is the CALIOP CTP. When multiple quantiles are estimated, L can be



72

averaged over multiple values of τ . The implications of Eq. 2.1 are that for larger quantiles

overestimates are penalized more than underestimates (and the opposite for lower quantiles).

L(τ ,y, ŷ) =


(1 − τ) |y − ŷ| for y ≤ ŷ

τ |y − ŷ| for y > ŷ

(2.1)

Each network has four fully connected layers consisting of 64, 32, 16, and 9 units. These

values were determined by starting with the architecture used in Håkansson et al. (2018). We

found moderate improvement after doubling the number of units and adding an additional

layer. Further increases in the number units increased the computational expense, but did

not improve performance. All layers except the last are followed by rectified linear unit

(ReLU) activations. The last layer represents the nine evenly spaced quantiles we estimate

(τ ranging from 0.1 to 0.9 in increments of 0.1) and has no activation function. Predictions

for CTP are obtained from the 50th quantile. A frequent problem in quantile regression is

the crossing of quantiles since there is no mechanism to ensure the curves do not overlap. In

our datasets, we observe crossing quantiles in less than 2% of predictions which we judged

to be small enough to ignore for our applications. Other works have suggested solutions for

minimizing the crossing of quantiles (Cannon, 2018).

The Adam optimizer (Kingma and Ba, 2015) is used starting with a learning rate of

5 × 10−3 determined using a learning rate range test (Smith, 2017). The batch size was

increased from 250 used in Håkansson et al. (2018) to 5,000 where the time taken for each

epoch stopped decreasing. The loss is evaluated on the validation dataset after each epoch.

The learning rate is reduced by a factor of 10 when the validation loss has not decreased for

the last 5 epochs to a minimum of 1 × 10−6. Training is stopped when the validation loss
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has not decreased for the previous 9 epochs. These values are subjectively chosen based

on the number of epochs needed for the loss to stop decreasing after each learning rate

reduction.

The inputs of each NN include the infrared channels specified in Table 2.1 for VIIRS and

Table 2.2 for ABI. In addition to these values and the NWP information, we include several

spatial metrics derived from a 5-by-5 pixel array surrounding the central pixel where the

prediction is made. These spatial metrics include differences between the central pixel and

both the coldest and warmest pixels and the standard deviation of all 25 pixels calculated for

all channels. In total, the VIIRS NN includes 51 inputs and the ABI NN includes 47 inputs.

All inputs are standardized by subtracting the mean and dividing by the standard deviation

calculated from the training dataset. The CALIOP observations of CTP are divided by 1000,

meaning predicted CTP values typically lie between 0 and 1. Standardizing the CALIOP

observations had no impact on performance, but consistently reduced training time by

several epochs.

The NNs are trained using TensorFlow (Abadi et al., 2016) on a Quadro RTX 6000. The

following analysis was performed using the NumPy (Harris et al., 2020), SciPy (Virtanen

et al., 2020), and Matplotlib (Hunter, 2007) software libraries.

Neural Network Performance Evaluation

Due to our choice of the 1-km CALIOP CTP product, when we analyze with respect

to optical depth, we can only compare instances where the 1-km and 5-km products have

identified roughly the same cloud layer. Otherwise, one risks using the optical depth of

a cloud to characterize the cloud-top pressure of another cloud lower in the atmosphere.
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Where we use optical depth, we limit the collocations to where the products agree on CTP

within 150 hPa. For both imagers this removes the overall number of collocations by 16% .

The optical depth and location of these collocations that are temporarily removed are shown

in Figure 2.3. Clouds with optical depths less than 0.5 are primarily affected with most of

these removed profiles occurring in the tropics. Less than 2.5% of clouds with an optical

depth near 1 are removed due to this requirement.

The performance of each NN is evaluated on our testing dataset (Figure 2.4). 99%

confidence intervals for mean absolute error (MAE) and bias (Figure 2.4.a and Figure 2.4.b)

are formed by 1,000 bootstrapped samples of our testing dataset. A two-sided t-test indicates

significant differences (p-values less than 0.001) between the NN and ACHA at all levels and

COD ranges, except the difference between 1000 hPa and 950 hPa at COD values between

3 and 30. MAE is, as expected, larger for clouds with low COD. ACHA appears to struggle

with CTP estimation at the mid-levels between 700 and 500 hPa. The MAE for the entire

testing dataset is 58.1 hPa for the NN and 109.3 hPa for ACHA. The NN shows statistically

significant improvement in most regions especially at the middle- and high-latitudes (Figure

2.4.d,e).

Both approaches have issues with biases with respect to CALIOP in their predictions

of CTP (Figure 2.4.b). The NN systematically fails to predict extreme values of CTP near

the surface and places them too high in the atmosphere. The opposite problem occurs at

the upper-levels, but is less exaggerated for clouds with high COD. Low COD clouds are

most affected, with large positive biases above the 700 hPa level. ACHA has similar, but

more extreme behavior, for clouds with low COD. ACHA has different signed biases as a

function of CTP for clouds with COD greater than 1. This results in ACHA placing these
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clouds between 600 and 900 hPa too low in the atmosphere, and clouds with COD greater

than 3 between 600 and 300 hPa too high in the atmosphere. This results in a tendency for

ACHA to predict a lower frequency of clouds in the mid-levels and could be a contributor

to the larger MAE at these levels. In terms of location, the bias patterns are similar between

the NN and ACHA (Figure 2.4.f,g), with a negative bias at the low-latitudes and a positive

bias at higher latitudes, but ACHA’s mean bias is typically of larger magnitude.

A similar analysis is done for the ABI NN (Figure 2.5). The evaluation of the ABI NN

shares many characteristics with that of the VIIRS NN. One difference is that optically

thin clouds at the highest levels (<150 hPa) have larger errors compared to the VIIRS NN.

Similar issues with the biases occur for ABI with a larger positive bias for optically thin

clouds at the upper-levels. The spatial patterns of MAE are similar to those of VIIRS. The

spatial pattern of the mean bias differs greatly, as the ABI NN typically has a positive mean

bias regardless of location. The MAE for all ABI and CALIOP collocations is 61.6 hPa.

While this is similar to VIIRS, the two MAE values are not directly comparable due to the

differences in the areas and meteorological conditions viewed.

A comparison between the ABI NN and ACHA is not performed due to the computational

expense of running ACHA for the large number of ABI images used. However, we feel

that the VIIRS NN/ACHA comparisons above and past evaluations of neural network CTP

models (Håkansson et al., 2018; Kox et al., 2014) sufficiently justifies an exploration into

their interpretability.
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Prediction Uncertainty Assessment

The application of quantile regression for obtaining uncertainty information in NN

CTP estimation has been evaluated by previous work (Pfreundschuh et al., 2018). We

perform a very brief assessment of the calibration of the predicted distributions from the

estimated quantiles for the VIIRS and ABI NNs to ensure we can achieve reasonably similar

results. To construct cumulative distribution functions (CDFs) we also use the approach by

Pfreundschuh et al. (2018) and extend the first and last quantiles to 0 and 1 using a piecewise

linear interpolation.

Figures 2.6.a and d show a probability integral transform (PIT; Dawid, 1984) that

indicates the frequency of observations as a function of the predicted value of the CDF.

The VIIRS NN appears to estimate CDFs that are too narrow evidenced by the higher

frequencies at the tails and the lower frequencies at the middle of the CDFs. The ABI NN

appears well calibrated with only small differences in observed frequencies throughout.

Figures 2.6.b and 2.6.e show similar information presented differently and again confirm

that the VIIRS NN predicts distributions that are slightly narrow, but the ABI distributions

accurately capture the range of observed values. Figures 2.6.c and 2.6.f illustrate how

the width of the predicted distribution (illustrated by the standard deviation of predicted

quantiles) corresponds to a wider range of errors observed when comparing to CALIOP.

Altogether, Figure 2.6 shows that the predicted distributions from each of these neural

networks are typically well calibrated and correspond to the observed errors in an intuitive

manner.



77

2.4 Interpretability Assessment

Many interpretation methods for ML models have been proposed. Some of these

approaches offer the ability to provide local explanations, which attempt to describe how

individual features contribute to a single model prediction. This is in contrast to global

explanations, which are computed over a set of predictions. We attempt to give different

perspectives on feature importance using several methods for explaining NN CTP models.

A key challenge is that many of the features used in these models are correlated with

one another. This issue in statistical models is often referred to as multicollinearity and

affects several aspects of model development and interpretation (Alin, 2010; Farrar and

Glauber, 1967; Dormann et al., 2013). Collinear features contribute to increases in the

variance of model parameter estimates (Alin, 2010; Daoud, 2017). They also hamper

interpretability (Wheeler and Tiefelsdorf, 2005) since feature importance is often shared

between collinear features which can lead to misleading conclusions about their overall

ranking relative to other features. Thus, a difficulty we struggle with throughout this analysis

is whether a feature is deemed important because it has physical significance related to the

task or whether it is correlated with another feature that does. Due to the variance in model

parameter estimates as a result of multicollinearity, the following metrics are computed over

five models with randomly initialized weights. In our case, these models have negligible

differences in overall performance (within 1.5 hPa MAE), but the exact dependencies on

particular features can be different.
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Sequential Backward Selection

Sequential backward selection (SBS) is commonly used to find reduced feature sets

with minimal reduction in model performance. The approach starts with selecting a single

feature, retraining the model without the feature, and recording the reduction in model

performance. This is done for all features, and the feature that yields the smallest decrease

in performance is removed. This process is repeated until the number of desired features is

reached. SBS can also be used to understand which feature has the most unique and useful

information for the task a model is trained for. A large increase in MAE after a feature is

removed implies that the feature has unique information relevant for CTP estimation that the

NN was not able to find in other features. A low increase in MAE after a feature is removed

could imply that the feature is not useful for CTP estimation in the NN, or that the useful

information the feature contained was not unique to the feature and could be obtained from

others.

In order to isolate the value of a given channel’s information, we perform a full SBS,

iterating over conceptually linked groups of features associated with each channel (Figure

2.7 and Figure 2.8). Removing groups of features allows us to determine feature importance

as a function of spectral band. Otherwise, a feature’s relevant information for the estimation

of CTP could also be found in other features from the same channel. This also allows

us to quantify the contribution of NWP model output to the NN’s performance. Satellite

estimates are often useful because they are based on observations (compared to an NWP

model forecast). Thus, quantifying the contribution of NWP and comparing it to that of

the actual observations could be one way of determining how useful or reliable a given

estimate of CTP is, in addition to the uncertainty estimates provided by the neural network.
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However, it is worth noting that the NWP group contains a larger number of features than

groups associated with each channel.

The feature group SBS analysis shows many intuitive characteristics of CTP estimation.

For VIIRS (Figure 2.7), these results imply that the 8.6-µm channel is the most important

channel followed by the 10.8-µm, and the 12.0-µm. The 8.6-µm channel, in conjunction with

window channels such as 10.8-µm, could be used to identify cloud phase (Strabala et al.,

1994) and place a cloud in the upper or lower portion of the troposphere. The most useful

fusion channels appear to be the 6.7-µm and 7.3-µm which contain information about water

vapor absorption and might be useful for placing a cloud above or below the bulk of the

water vapor in a given scene. The low increases in MAE of CO2 fusion channels (13.3-µm

through 14.2-µm) are surprising given that CO2-slicing has proven a useful approach for

CTP estimation.

In most cases, a model’s reliance on an individual channel increases when the number

of channels decrease. However, there are a few exceptions to this generalization for VIIRS,

including the impact of removing information from 8.6-µm and 10.8-µm channels once

the 13.9-µm and 14.2-µm channels are removed (Figure 2.7 rounds three to five). NWP

information ranks highly in the first few rounds, and as channels are removed, we see an

increasing reliance on NWP information. This indicates that the usage of NWP information

changes as a function of the channels included in an NN.

The same analysis indicates a few similarities for ABI (Figure 2.8). The 8.4-µm, 10.3-

µm, and 12.3-µm all have relatively large increase in MAE when tested in the first several

rounds. Unlike VIIRS, the 13.3-µm channel ranks fairly highly. On ABI, the 11.2-µm, ozone

channel (9.6-µm) and strongly absorbing water vapor channels (6.2-µm through 7.3-µm) do
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not benefit the model strictly in terms of MAE.

In the first round, NWP information appears to be more essential for accurate predictions

from ABI compared to VIIRS. This impact becomes more similar after the CO2 channels

(with wavelengths 13.3-µm and above) are removed from the VIIRS models. VIIRS appears

to rely more heavily on information from the 8.6-µm channel. The impact of removing the

lone CO2 channel on ABI (13.3-µm) is different than the impact of removing the four fusion

CO2 channels for VIIRS. For instance, in round 7 after the 13.3-µm is removed, the MAE

from removing the 12.3-µm or 8.4-µm is nearly tripled on ABI. After removing the fusion

CO2 channels from VIIRS, it is mostly the impact of NWP information which is increased.

Figures 2.7 and 2.8 make it clear that similar performance can be achieved for these CTP

models with reduced feature sets. Ignoring differences in reliance on NWP information,

similar models could be created using the feature sets after round 5 for both instruments.

We continue to use the full feature set to keep the latter experiments consistent.

Neural Network Interpretation Methods

Next, we attempt to characterize these models using approaches specific to NNs that

offer local explanations. Both local explanation methods we describe below are relatively

complex compared to backward selection. We attempt to provide a concise description of

how these approaches work in general terms, but if a detailed explanation is desired we refer

the reader to their corresponding references.

The first method used is layer-wise relevance propagation (LRP; Bach et al. 2015).

LRP is a popular method for model attribution and has been used to interpret models in

applications such as radar reflectivity estimation from satellite imagers (Hilburn et al., 2021)
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and for detecting common change patterns among climate models (Barnes et al., 2020).

LRP can be generally described as computing a backward pass through an NN, starting

with the activations at the last layer. A prediction score is propagated backward through

each layer of the model and projected onto the dimensions of the original input at the first

layer. There are several different propagation rules that dictate how the prediction score

is distributed to the units of each layer. In our application, we use the epsilon rule for all

layers, which adds a small positive value to the denominator of the relevance propagation

rule in order to improve numerical stability.

The second method we use is Shapley additive explanations (SHAP; Lundberg and

Lee 2017), based on the Shapley value from cooperative game theory (Shapley, 1953).

Similar to the relevance from LRP, Shapley values attempt to attribute responsibility to

features for a given prediction. In the original SHAP paper, a model-agnostic approximation

of Shapley values is introduced, called kernel SHAP. However, this approach ignores

information available in the structure of the neural network that could be useful for improving

computational performance. The same work introduces a NN specific approach, deep SHAP,

that leverages principles from DeepLIFT (Shrikumar et al., 2017). Specifically, deep SHAP

takes advantage of the per-node attribution rules used in DeepLIFT.

Both the LRP and SHAP can produce signed attributions, according to whether an

input feature acted to increase or decrease the prediction. In itself, interpreting the output

from local explanation methods can be a difficult task. We attempt to simplify this by

standardizing the local explanations. We take the absolute value of the LRP relevance and

SHAP values and express them relative to the feature with the greatest value for each input

example. For each prediction, each feature has relative importance ranging from 0, which
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implies it was not important, to 1, which implies the feature was the most important or tied

with the most important.

Figures 2.9 and 2.10 both show the global relative feature importance calculated over

conceptually-linked groups of features. These values are calculated by summing the absolute

value of the LRP and SHAP attributions for each group of features and dividing by the value

from the largest group. The 8.4-µm (ABI) and 8.6-µm (VIIRS) channels are suggested to

be the most important channels for CTP estimation. LRP and SHAP assign low relative

feature importance to the ozone channels around 9.7-µm on both instruments and the 6.7-µm

and 7.3-µm channels on VIIRS. Both methods rank spatial information lower than spectral

information for both imagers. Both methods also rank spatial metrics from fusion channels

lower than those from native features, despite there being more-than-double the number of

features from the fusion channels.

Despite the agreement on a some broad points, there are a few differences between LRP

and SHAP. In general, the relative feature importance values from LRP are more distributed

across features compared to SHAP, which gives sparser explanations that emphasize the

most important features. The high rankings of the 8.4-µm and 8.6-µm channels from SHAP

imply that most explanations are dominated by these channels. Both methods agree on

the relative ranking of most features, with the significant exception of NWP data for both

sensors, where LRP reports values more than twice that of SHAP. SHAP’s attribution here

also contrasts with the backward selection results which imply that NWP information is

very useful for CTP estimation.

There are several other differences between what information these methods suggest that

the NNs use compared to backward selection. LRP reports that the fusion channels, ignoring
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spatial metrics, have a roughly similar value of relative feature importance as the VIIRS

native channels. However, when we remove all fusion channels from the VIIRS models,

MAE only increases by less than 5 hPa, which is less than removing information from the

8.6-µm or 10.8-µm channels. Of all fusion channels, the 6.7-µm and 7.3-µm channels appear

to the have the largest impact when removed during backward selection but are ranked fairly

low when compared to the 13.3-µm, which both LRP and SHAP rank as the most important

fusion channel.

Local Explanation Clustering

Next, we explore the local explanations for these models. We attempt to find conceptually

similar explanations among the local attributions. We then analyze these explanations as a

function of their dominant features, CTP, cloud-top phase, opacity, and location. We find

these explanations by using a K-means clustering (from scikit-learn version 0.24; Pedregosa

et al. 2011) on the local attributions. Thus, each imager-CALIOP collocation belongs

to a specific cluster. For concision, we only perform the following analysis using LRP.

We specify four clusters, but do not conclude that it is the optimal number, nor that there

are discrete clusters at all. We use the clustering to partition the local explanations into

more homogeneous groups and visualize differences among them. The motivation for this

analysis is to help understand the kinds of relationships that might be used in the neural

networks in predicting CTP for different types of clouds. Figure 2.11 shows the clustering

analysis performed for VIIRS and describes each cluster in terms of the the relative feature

importance for predictions that belong to each cluster. Figure 2.11 also illustrates the fraction

of all collocations belonging to each cluster in terms of CTP, cloud-top phase, opacity, and
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location.

VIIRS Cluster 1 has high feature importance in the 8.6-µm channel where it was the

leading feature in most predictions. Cluster 1 also had high feature importance in the 10.8-

µm channel and low importance in fusion channels. It represents a common explanation

across all locations and favors optically thin clouds at all levels regardless of cloud phase.

VIIRS Cluster 2 has the highest feature importance in the 12.0-µm, 6.7-µm and 7.3-µm

channels, and a high importance in fusion CO2 channels. It primarily represents upper-level

liquid clouds and upper-level opaque ice clouds. Cluster 2 is globally distributed, but is not

often found in areas dominated by lower- and middle-level cloudiness. VIIRS Cluster 3 has

high feature importance in the 13.3-µm channel, spatial metrics from the 12.0-µm channel,

and NWP surface temperature. It is the dominant explanation for lower-level liquid clouds

and explains a large fraction of clouds occurring off the western coast of South America, the

southwestern coast of Africa, and regions where persistent low-level cloudiness is common.

VIIRS Cluster 4 has high feature importance for spatial metrics, NWP information, and

moderate values for the fusion CO2 channels. It is common in many locations, but is frequent

over the Southern Ocean. Given the dependence on spatial metrics, and lack of a clear

relationship with cloud properties, we expect that Cluster 4 might primarily represent cloud

edges where the spatial metrics will take on particularly large values (see Section 4.2.4)

Figure 2.12 illustrates a similar analysis for ABI. Overall, the clusters appear to be less

sensitive to opacity and more sensitive to cloud-top pressure. Some similar patterns exist in

the spatial distribution of the clusters when comparing ABI to VIIRS.

ABI Cluster 1 shows importance in channels with water vapor absorption (6.2-µm,

6.9-µm and 7.2-µm), many spatial metrics, and NWP information. Cluster 1 primarily
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represents clouds at all levels but slightly favors low-level opaque ice clouds. ABI Cluster

2 explains a large fraction of low-level liquid clouds and relies heavily on the 12.3-µm

channel where it is the leading feature for over 90% of examples. ABI Cluster 2 is frequent

in areas with low-level cloud cover. ABI Cluster 3 has the largest feature importance in the

8.4-µm channel, where it is frequently the leading feature. It is present at various levels,

slightly favoring optically thin liquid clouds and mostly occurs at the tropics. ABI Cluster

4 has high feature importance in the 6.2-µm, 6.9-µm, 7.3-µm and 8.4-µm channels and an

otherwise low importance in spatial metrics and NWP data aside from 300 hPa temperatures.

It describes the vast majority of predictions for ice clouds between 600 hPa and 200 hPa

and is primarily located at the high latitudes.

There are a few loose similarities between the clusters identified in the local explanations

of both the ABI and VIIRS models. One such similarity is between VIIRS Cluster 3 and ABI

Cluster 2. Both of these groups show at least moderate importance in the 12.0-µm (VIIRS),

and 12.3-µm (ABI) channels and explain a large proportion of low-level water clouds in

similar locations. Both models also have one cluster associated with feature importance in

spatial information (ABI Cluster 1 and VIIRS Cluster 4) that occurs somewhat frequently in

the high latitudes and more moderately in the tropics. Another loose similarity can be found

between VIIRS Cluster 1 and ABI Cluster 3, which have high importance in the 8.4-µm and

8.6-µm channels but have very different spatial distributions.

Local Explanation Example

In an effort to contextualize the LRP attributions and illustrate potential relationships

between VIIRS Cluster 4 and cloud edges, we calculate relative feature importance from
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LRP for an example VIIRS scene centered over -55°S, 100°E (Figure 2.13). The LRP values

are standardized in the same way and are reported as a function of the same conceptual

groups in Figure 2.9.a. The neural network is not capable of cloud detection, so predictions

are provided in all pixels regardless of whether there is a cloud present.

Shown in Figure 2.13.a and 2.13.b is 10.8-µm channel from VIIRS and the predictions

of CTP made by the NN. The width of the predicted distribution can be large near edges of

clouds that have high contrast with the surface (Figure 2.13.c). The predicted distributions

are also wider where upper-level clouds overlap with mid-level clouds (Figure 2.13.c, lower

left). In this scene, NWP information is most important for middle- and lower-level clouds.

Native spectral observations (Figure 2.13.e) are most important for upper and lower-level

clouds, but there is a strong decrease in the importance of native spectral observations near

clouds edges (Figure 2.13.e, right). These low values of the relative feature importance of

native spectral observations near cloud edges correspond to large importance of the spatial

metrics from native VIIRS observations (Figure 2.13.g). The relative feature importance

for spectral fusion feature group is largest for lower- and middle-level clouds, and has more

moderate values for upper-level clouds. The feature importance of the spatial metrics from

fusion channels (Figure 2.13.h) appear to have the lowest values in this scene overall and only

have moderate impact for more spatially uniform low-level clouds and very low importance

for upper-level clouds.

We see a few potential explanations for the importance of spatial metrics around cloud

edges. At cloud edges, spectral features can difficult to interpret due to the possibility

of a pixel being only partially cloudy and the resulting brightness temperature being a

mixture of a cloud and an unobscured view of the surface. Spatial metrics such as the
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difference between the central pixel and the 5-by-5 pixel maximum and minimum could

provide information on the brightness temperature of a nearby fully clear pixel and a nearby

fully cloudy pixel. A second explanation could be that this is an artifact of the way our

dataset is collected. CALIOP observations are not typically made at the exact same time as

VIIRS. This time difference might allow for the cloud observed by CALIOP move outside

the view of collocated imager pixel. Spatial metrics might indicate where this is likely and

this behavior could alternatively be symptom of training to match an imperfect label.

2.5 Discussion

The efforts to interpret the models in this work give slightly different perspectives on

feature importance for NN CTP estimation. In many cases, this is expected when comparing

SBS to LRP and SHAP. Ultimately, SBS describes a different set of models, and observing a

small increase in error when removing a set of features does not necessarily imply that they

are not useful for CTP estimation. It instead might be an indicator that the information is not

unique to a feature. This may be the case for the fusion CO2 channels in the VIIRS model.

When removed through backward selection (Figure 2.7), they yield only small increases in

model error; however, the LRP and SHAP attribute a moderate amount of feature importance

to them. This indicates that while fusion CO2 channels may be useful for CTP estimation,

similar performance, in terms of MAE, can be attained without them. Other differences are

less easily explained, such as the differences in importance of NWP information between

LRP and SHAP. LRP assigns a large relative FI to NWP information and is in agreement

with the first round of the SBS feature group analysis for both instruments, indicating that



88

this might be a failure of SHAP’s attribution.

A few potential sources of the differences between LRP and SHAP could be rooted in our

choice of model architecture, the nature of our prediction task, and choice of LRP rules. LRP

was initially developed to explain the output of convolutional neural networks trained for

image classification (Bach et al., 2015). It is unclear how well these attributions generalize

to regression problems. Similarly, during development we noticed slight differences in

attributions depending on the exact LRP propagation rules used (Montavon et al., 2019),

but qualitatively similar takeaways overall (not shown).

Despite discrepancies in the importance of a few features, there is still some agreement

between approaches. All approaches agree that the 8.4-µm and 8.6-µm channels are useful

in the estimation of CTP. Similar agreement between methods is found for the importance of

the 10.8-µm and 11.2-µm channels for VIIRS and the 12.3-µm channel for ABI. Intuitively,

all approaches place a much greater emphasis on the brightness temperatures, which have a

more direct physical relationship to cloud-top pressure compared to spatial metrics.

Several methods also agree on the relative unimportance of particular features. These

include the ozone channels from both instruments, the 6.2-µm ABI band, which is sensitive

to upper tropospheric water vapor, and the spatial metrics calculated from the VIIRS/CrIS

fusion channels. In this case it is helpful to remember that the fusion channels are derived

from the relatively coarse CrIS observations and interpolated using infrared channels from

VIIRS. It is plausible that fine-scale spatial variability on the scale of 3.75 km (the edge

length of 5 VIIRS pixels at nadir) is not well-represented.

Regardless of disagreement between LRP and SHAP, we can conclude that the VI-

IRS/CrIS fusion channels only have small benefit when included in the VIIRS NN since
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they increased MAE only by roughly 5 hPa (Figure 2.7) when all are removed. However,

several fusion channels indicated no benefit after removal (Figure 2.7 rounds 1 through 5).

One point made earlier in this paper is that removing these channels had the effect

of increasing the reliance on NWP information (Figures 2.7 and 2.8). The SBS analysis

shows that the fusion CO2 channels do not substantially reduce model error when included.

However, their inclusion is suggested to reduce the reliance on NWP information. This

is an important point since it can change how much a given CTP prediction depends on

observations, compared to ancillary information from an NWP model forecast. When

included in climate records, changing the source of the ancillary NWP data can yield small

but meaningful changes in the variability of cloud properties estimated from imagers (Foster

et al., 2016). Thus, the physical interpretation CTP estimates can change depending on the

reliance on NWP information.

Other difficulties include directly comparing results from the VIIRS and ABI CTP

models. Even though spatial metrics are both computed over 5-by-5 pixel arrays, these

metrics have different meanings for each sensor. This is due to differing spatial resolutions

between sensors and the fact that the spatial resolution of VIIRS varies less at higher viewing

angles, due to the aggregation of pixels at lower viewing angles. The spatial resolution of

ABI varies much more considerably. Thus, the physical meaning of these metrics is likely

quite different between the two instruments.

It is interesting to compare results of this analysis to the physical information exploited in

approaches like CO2-slicing. CO2 channels do not seem to add much value to a model that

already has access to infrared window channels including a channel around 8.6-µm. There

is more value in including channels with lower- and middle-level water vapor absorption,
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such as the 6.7-µm and 7.3-µm. However, it is not clear if this observation holds for imagers,

such as MODIS, where these measurements are made natively. Despite this caveat, most of

the feature importance metrics used in this analysis imply that not exploiting variability of

the 8.6-µm or infrared window channels between 10-µm and 12-µm will yield a suboptimal

result.

The LRP clustering analysis suggests that these models have the capacity to handle CTP

predictions for certain types of clouds differently. This is represented by how identified

clusters vary with cloud-top phase, opacity, location, and the features used to make a

particular prediction. This is an intuitive result, since knowledge of cloud-phase may narrow

the range of plausible CTP values. Similarly, knowledge of the opacity of a cloud may

inform the NN about the contribution to top-of-atmosphere brightness temperatures from

sources below the cloud.

Throughout this work, we note substantial variability in model explanations between

sensors and minor differences between random initializations. We stress that even if two CTP

NNs for different sensors are trained to match observations from CALIOP, it is unlikely that

their local explanations are similar. Our results might not be applicable to other imager-lidar

pairings. This has implications for transitioning ML-based approaches to climate records

made up of multiple sensors such as VIIRS and MODIS, in which it may be desirable for

models for each sensor to have similar explanations in addition to similar predictions for a

given example. We suspect that some differences in this analysis come from the fact that

VIIRS views a wider range of meteorological conditions. Additionally, our ABI/CALIOP

testing dataset is only valid for the last three months of the year, and our VIIRS/CALIOP

collocations are collected over an entire year.
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Despite the wealth of information provided by the interpretability methods used in this

analysis, many questions about how particular features are used in CTP models remain

unanswered. For example, why are the 11.2-µm and 12.3-µm channels favored over the

10.3-µm channel on ABI which has less water vapor absorption? Similar questions can

be asked about why spatial metrics from one channel might be favored over others or

why upper-level water vapor absorption is relatively unimportant for ABI CTP estimation.

This analysis gives us an overall idea about which features are useful for an NN, but the

task of model interpretation is now shifted to attributing physical significance to these

results. Difficulties in attributing physical significance are enhanced by the fact that there is

disagreement between interpretability approaches. This motivates future work in verifying

local explanations, such as the comparison in Mamalakis et al. (2021), where ground-truth

explanations are available.

2.6 Conclusions

We characterize the use of individual channels of LEO and GEO imagers for NN

CTP estimation. We first perform a short comparison between our NNs and an operational

approach which demonstrates large improvement in CTP estimation with respect to CALIOP.

We then use backward selection, LRP, and SHAP to infer the relative importance of features.

We find many instances of disagreement between these different perspectives on feature

importance, but broad agreement on the importance of a few channels, including the VIIRS

8.4-µm channel (8.6-µm for ABI) and other infrared window channels around 10-µm to

12-µm. We also observe a small benefit in including absorption channels that are sensitive
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to middle-level and lower-level water vapor. VIIRS/CrIS fusion CO2 channels and spatial

metrics derived from them appear add little-to-no improvement to CTP models where native

infrared channels are already present, but have impact on the reliance of a given model on

NWP model output. Clustering local explanations from LRP illustrates how NN models

can exploit variability related to CTP, phase, and opacity from infrared measurements.

The LRP clustering also suggests, intuitively, that the NNs use different infrared channel

combinations for estimating CTP of the different cloud types. While this analysis reveals

several interesting aspects of the relative importance of infrared channels for CTP estimation,

this work illustrates the immense challenge of attributing physical significance to both global

and local explanations for neural networks.
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Figure 2.1: Shown are the distributions of VIIRS collocations with CALIOP for the training
(a), validation (b), and testing (c) datasets. (d) indicates the seasonal distribution of each.
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Figure 2.2: Shown are the distributions of ABI collocations with CALIOP for the training
(a), validation (b), and testing (c) datasets. Panel (d) indicates the seasonal distribution of
each dataset.
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Figure 2.3: (a) and (c) indicate the fraction of collocations that are removed by applying the
requirement that the 1-km and 5-km CALIOP products agree within 150 hPa. Also shown
is the mean differences between the two products as a function of optical depth. (b) and (d)
indicate the fraction of collocations removed on a 5-by-5 degree latitude/longitude grid.
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Figure 2.4: (a) shows the mean absolute error of the NN (black) and ACHA (red) for several
values of COD. (b) shows the bias of the NN and ACHA compared to CALIOP over the
same values of COD. (a) and (b) are shown with 99% confidence intervals in lighter shading,
but are often obscured by the mean values due to the narrow intervals. (c) indicates the
number of collocations occurring between CALIOP and VIIRS. (d) and (e) indicate the
mean absolute error on a 5-by-5 degree latitude/longitude grid. Stippling in (d) and (e)
indicate that the respective approach has a statistically significant improvement with a
p-value less than 0.001 at the grid point. (f) and (g) indicate the mean bias on the same grid.
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Figure 2.5: (a) shows the MAE for the NN over several ranges of COD. (b) shows the bias
over the same ranges of COD. (a) and (b) are shown with 99% confidence intervals in lighter
shading, but are often obscured by the mean values due to the narrow intervals. (c) is the
number of collocations between ABI and CALIOP. (d) and (e) indicate the MAE and bias
of the neural network on a 5-by-5 degree latitude/longitude grid.
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Figure 2.6: (a) and (b) indicate the observed frequency of CALIOP observations as a
function of the value of the predicted cumulative distribution function (CDF) from the
predicted quantiles. (b) and (e) show the fraction of CALIOP observations that fall within
the prediction intervals derived from the predicted quantiles. Dashed lines in (a), (b), (d),
and (e) indicate a well calibrated model. (c) and (f) show the distribution of absolute errors
with CALIOP as a function of the standard deviation of predicted quantiles. The middle
orange line represents the 50th percentile, box edges represent the 30th and 70th percentile,
and the whiskers represent the 10th and 90th percentile of absolute error (left x-axis) with
respect to CALIOP. The cumulative distribution function is shown in blue and represented
on the right x-axis.
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Figure 2.7: Shown are the results of a backward selection performed on features linked
to each channel used in the VIIRS CTP models. This figure is most easily interpreted
by considering each column from left to right. Each column represents a single round of
backward selection. The inset plot shows the MAE of a model that includes all remaining
features present in a given column. In each round, a feature’s impact is tested by training
five identical but randomly initialized models without that feature and recording the MAE.
The value in each box represents the mean increase in MAE (of the three best-performing
models) relative to a model that includes all features present in a column. Note that the
feature group that increases MAE the least in a given round is permanently removed from
the model and is no longer tested in the following rounds.
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Figure 2.8: Shown are the results of a backward selection performed on features linked
to each channel used in the ABI CTP models. This figure is most easily interpreted by
considering each column from left to right. Each column represents a single round of
backward selection. The inset plot shows the MAE of a model that include all remaining
features after each round. In each round, a feature’s impact is tested by training five identical
but randomly initialized models without that feature and recording the MAE. The value
in each box represents the mean increase in MAE (of the three best-performing models)
relative to a model that includes all features present in a column. Note that the feature group
that increases MAE the least in a given round is permanently removed from the model and
is no longer tested in the following rounds.
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Figure 2.9: Relative feature importance for different groups of features calculated over five
VIIRS NN models. (a) separates channel brightness temperatures from their associated
spatial metrics and fusion channels from native VIIRS channels. (b) separates features
based on their associated channel.
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Figure 2.10: Cluster analysis of relative feature importance values calculated from LRP for
the ABI CTP models. (a) represents the distribution of feature importance values for each
cluster, where the black middle line, box edges, and whiskers represent the 50th, 30th/70th,
and 10th/90th quantiles of each feature. (b) and (c) show the distribution of each cluster
with respect to CTP and optical depth of the uppermost cloud for ice clouds and liquid
clouds respectively. (d), (e), (f), (g) show the spatial distribution of each cluster on a regular
5-degree grid and the proportion of collocations falling within each cluster listed above.
Note that the color bars represent slightly different ranges and are chosen to emphasize
spatial variability within each cluster. The analysis in this figure is subject to the requirement
described in Figure 2.3 due to the use of optical depth.
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Figure 2.11: Cluster analysis of relative feature importance values calculated from LRP
for the VIIRS CTP models. (a) represents the distribution of feature importance values
for each cluster where the black middle line, box edges, and whiskers represent the 50th,
30th/70th, and 10th/90th quantiles of each feature. (b) and (c) show the distribution of
each cluster with respect to CTP and optical depth of the uppermost cloud for ice clouds
and liquid clouds respectively. (d), (e), (f), (g) show the spatial distribution of each cluster
on a regular 5-degree grid and the proportion of collocations falling within each cluster
listed above. Note that the color bars represent slightly different ranges and are chosen to
emphasize spatial variability within each cluster. The analysis in this figure is subject to the
requirement described in Figure 2.3 due to the use of optical depth. Some fusion channel
spatial metrics are not shown in (a) due to very low values and to ease visualization.
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Figure 2.12: Cluster analysis of relative feature importance values calculated from LRP for
the ABI CTP models. (a) represents the distribution of feature importance values for each
cluster, where the black middle line, box edges, and whiskers represent the 50th, 30th/70th,
and 10th/90th quantiles of each feature. (b) and (c) show the distribution of each cluster
with respect to CTP and optical depth of the uppermost cloud for ice clouds and liquid
clouds respectively. (d), (e), (f), (g) show the spatial distribution of each cluster on a regular
5-degree grid and the proportion of collocations falling within each cluster listed above.
Note that the color bars represent slightly different ranges and are chosen to emphasize
spatial variability within each cluster. The analysis in this figure is subject to the requirement
described in Figure 2.3 due to the use of optical depth.
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Figure 2.13: Example of CTP predictions for VIIRS scene centered over -55°S, 100°E. (a)
is the 10.8-µm infrared channel. (b) is the estimates of CTP from the 50th quantile. (c) is
the width of the 80% prediction interval constructed from the 10th and 90th quantiles. (d),
(e), (f), (g), and (h) are the LRP relative feature importance for the NWP, spectral native,
spectral fusion, spatial native, and spatial fusion groups discussed in the text.
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3 optimizing for consistency in neural network cloud

property retrievals for multi-sensor satellite records

3.1 Introduction

Satellite imagers have long been used to estimate properties of clouds using both physical

and statistical approaches. Examples include cloud-top height (Inoue, 1985; Chahine, 1974),

cloud-base height (Seaman et al., 2017; Noh et al., 2017), cloud optical depth and effective

radius (Nakajima and King, 1990), cloud droplet number concentration (Brenguier et al.,

2000) and many others. These derived products can be used to study long-term variation

in clouds given a sufficiently long observational record. There have been many efforts to

create stable observational records from sensors in both low-earth and geostationary orbit to

facilitate such studies (Popp et al., 2020). However, intercomparisons have shown varying

levels of disagreement in seasonal and long-term variability of cloud properties from imager

observations (Stubenrauch et al., 2013; Karlsson and Devasthale, 2018).

The Advanced Very-High Resolution Radiometer (AVHRR) is the longest imager record

with a similar sensor design beginning in 1979. Given the need for stable long-term records

of cloud properties, there have been several projects aimed at reprocessing AVHRR data.

These include the Pathfinder Atmospheres - Extended dataset (PATMOS-x; Heidinger et al.,

2014), the Climate Monitoring Satellite Application Facility (CM SAF) Cloud, Albedo

And Surface Radiation dataset (CLARA-A2; Karlsson et al. and the Climate Change

Initiative Cloud project (Cloud CCI; Stengel et al., 2020). Regarding more recent imagers,

there are efforts to create continuous datasets of or assess the differences between the
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relatively modern Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible

Infrared Imaging Radiometer Suite (VIIRS) instruments (Uprety et al., 2013; Li et al.,

2018; Skakun et al., 2018; Hall et al., 2019; Xiong et al., 2020). Especially relevant to this

work, are the NASA MODIS and VIIRS climate data record continuity cloud properties

(CLDPROP) (Platnick et al., 2021; Frey et al., 2020). Geostationary (GEO) records include

the international satellite cloud climatology project (ISCCP; Schiffer and Rossow 1983)

which is a popular dataset made up of relatively coarse resolution observations from multiple

GEO imagers. With the recent launch of more capable GEO imagers such as the Advanced

Baseline Imager (ABI; Schmit et al. 2017), Advanced Himawari Imager (AHI; Bessho

et al. 2016) and the forthcoming Flexible Combined Imager (FCI; Durand et al. 2015) a

next-generation version (ISCCP-NG) is in early stages of development (Heidinger et al.,

2021).

Constructing a cloud climatology from a single or multiple different instruments comes

with many challenges. These can include differences in channel availability, or even slight

differences in spectral response functions among channels with similar central wavelengths

(Meyer et al., 2020). Sensor calibration can drift over time for a single sensor, or differ from

another sensor of the same design requiring adjustments (Heidinger et al., 2010; Bhatt et al.,

2016). Spatial resolution can play a role due to the detection of features at fine scales that

may go unresolved by others (Frey et al., 2020). Sensors among a single record could have

different orbits making intercomparisons difficult (e.g. Aqua and Terra MODIS). Many

satellites carrying AVHRR drift in their orbits causing the local observation time to change

(e.g. NOAA-14, and NOAA-15). The specific orbit and time period covered by a satellite

mission also affects what sources can be used to validate derived products, and the amount
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of spatiotemporal overlap between other sensors in which consistency is needed. All of

these considerations contribute to the difficult task of creating reliable long-term records of

derived products from measurements made by multiple sensors.

Machine learning (ML) has become a popular tool for estimating characteristics of

clouds and climate (Beucler et al., 2021). Several ML approaches have used the Cloud-

Aerosol Lidar with Orthogonal Polarization (CALIOP; Winker et al. 2009) as a labeled

dataset to train these algorithms (Kox et al., 2014; Håkansson et al., 2018; Wang et al.,

2020; White et al., 2021). For supervised ML applications, having a labeled dataset that

spans a wide range of plausible conditions is a critical component to ensuring the resulting

model is capable of generalizing to unseen observations. Several satellite imagers make

observations collocated with CALIOP, but there are specific limitations that need to be

accounted for. MODIS/CALIOP collocations only occur at low MODIS viewing angles.

Collocations between VIIRS and CALIOP do not contain sun glint and models trained with

these datasets can require adjustments for algorithms that make use of visible channels

(White et al., 2021). Thus, while CALIOP is a useful resource, there are caveats regarding

the representativeness of these collocations that can require special treatment.

In this work, we explore strategies to transition ML algorithms to imager cloud climate

records made up of multiple sensors. Specifically we concern ourselves with creating

continuous record of cloud-top pressure (CTP) from the VIIRS and MODIS instruments

that makes use of neural networks trained to match CALIOP. This is a challenging task

since, as previously mentioned, VIIRS and MODIS both have different distributions of

collocations with CALIOP. Therefore it is likely that models trained separately for each

sensor may exhibit different behavior. Both VIIRS and MODIS have common channels
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around 8.6 µm, 11 µm and 12 µm, but their central wavelengths and spectral response

functions differ. Furthermore, their spatial resolutions differ making it difficult to obtain

comparable spatial metrics between both instruments. This means there is no guarantee

that a model trained on VIIRS and CALIOP collocations will perform accurately when

supplied with MODIS data. While there have been many efforts to demonstrate the utility

of ML-based methods for cloud property estimation, there are not many evaluations of how

well these methods generalize to sensors they are not trained with.

We aim to explore whether special treatment is needed for transitioning ML-based

cloud-top pressure (CTP) models to climate records made up of two satellite imagers.

We perform experiments where neural network models for each sensor have access to

different sets of channels and where one or both imagers have access to labeled data. We

show that a simple modification to the loss function of a neural network can generally

improve consistency between VIIRS and MODIS cloud-top pressure if we take advantage

of collocations between these two instruments. In all instances we compare our trained

neural networks to the CLDPROP CTP product and neural networks without our proposed

modification. This analysis is motivated by the increase in performance of ML-based

CTP algorithms relative to current operational approaches, the increasing prevalence of

ML-based remote sensing applications, and the growing need for reliable cloud climate

records with high intersensor consistency.
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3.2 Data

Instruments

VIIRS is a polar-orbiting satellite imager with 16 moderate resolution channels spanning

visible, near-infrared and infrared wavelengths with a spatial resolution of 750 m at nadir.

Its swath width of 3,600 km allows for at least twice daily views of earth with more frequent

coverage at higher latitudes. VIIRS is currently on board the Suomi National Polar-orbiting

Partnership (Suomi-NPP) and NOAA-20 satellites, and is additionally planned to launch on

the future JPSS-2, -3, and -4 satellites. For this study we only use data from the Suomi-NPP

VIIRS. In order to avoid issues with the representativeness of sun glint in the collocation

dataset with CALIOP, we restrict ourselves to using only the three infrared channels without

any solar contribution (Table 2.1). Their spectral response functions are shown in Fig. 3.1.

MODIS is a polar-orbiting satellite with 36 spectral channels at resolutions up to 250

m. The channels used from MODIS in this analysis all have a spatial resolution of 1 km.

Relative to VIIRS, MODIS has a more narrow swath width resulting in some gaps in daily

coverage near the equator. MODIS is currently on board the Terra and Aqua satellites

launched in 2001 and 2006 respectively. MODIS has three channels that approximately

match the spectral response function of the M14, M15 and M16 channels on VIIRS (Table

2.1). In addition to these channels, we use MODIS channels 27, 28 and 30 with central

wavelengths of 6.8 µm, 7.3 µm and 9.7 µm in some of the following analysis. Their spectral

response functions are also shown in Fig. 3.1.

MODIS and VIIRS differ on how the spatial resolution of the sensor varies with viewing

angle. The VIIRS processing aggregates measurements at low viewing angles making for
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a nadir resolution of 750 m, but as the viewing angle increases, these measurements are

disaggregated allowing for a more consistent spatial resolution at higher viewing angles. A

thorough explanation of this feature of VIIRS can be found in Cao et al. 2014. MODIS does

not have this functionality and its nadir spatial resolution of 1 km increases monotonically

at higher viewing angles.

CALIOP serves as our reference instrument for training our neural networks to estimate

cloud-top pressure. CALIOP is particularly sensitive to thin cirrus clouds making it a

suitable validation source for many cloud properties including cloud detection and cloud-top

pressure estimation from passive imagers (Holz et al., 2008). However, CALIOP only

makes observations near-nadir to the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite

Observations (CALIPSO) satellite and only views the same ground location at roughly

16-day intervals. Furthermore, CALIOP data have only been available since its launch in

2006 making validation efforts in early portions of many imager records difficult. Even so,

CALIOP has been used to validate cloud property estimates for a wide array of imagers and

its lifetime overlaps significantly with MODIS Aqua and entirely with S-NPP VIIRS. In this

work, we use the cloud-top pressure estimates from version 4.2 of the 1 km CALIOP cloud

layer product (Vaughan et al., 2009) to train and evaluate our neural network approaches.

Collocations between Imagers and CALIOP

Due to the slightly differing orbits of S-NPP and the CALIPSO satellites, VIIRS makes

collocations with CALIOP roughly every 2 to 3 days. Collocations are found by matching

each 1 km profile from the CALIOP cloud layers product to the nearest imager pixel. The

differences in viewing angles between CALIOP and imagers can cause slight issues matching
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observations. Thus, a parallax correction is applied using the altitude of the uppermost cloud

layer observed in the CALIOP observations and the VIIRS viewing geometry. CALIOP

collocations with MODIS are found in a similar manner. MODIS and CALIOP have been

in the same A-train constellation (L’Ecuyer and Jiang, 2011) for the vast majority of their

operational lifetimes until the formation of the C-train (Braun et al., 2019). Due to this, there

is a much larger availability of collocations between MODIS and CALIOP than with VIIRS

and CALIOP. The C-train formation also changes the spatial distribution of collocations

found between VIIRS and CALIOP.

These datasets are split into a training, validation, and testing sets. Training datasets

are used to train the neural networks. Validation datasets are used during development to

tune hyperparameters and for early-stopping. Testing datasets are used to assess the overall

performance of the models on unseen data. The VIIRS/CALIOP training set comes from

2019 and 2017, the validation set comes from 2018, and the testing data comes from 2016.

MODIS/CALIOP collocations are split into the training set which consists of all except the

first 7 days in each month in 2017, a validation set of the first 7 days of each month in 2017,

and a testing dataset of the first 15 days of each month in 2016. Note that there is a small

amount overlap between the time periods used in training set for VIIRS and the validation

set for MODIS. However there is no overlap in time with the testing datasets meaning that

the data used during training and development are independent from the performance results

reported later in this work. The spatial distribution of collocations are shown in Fig. 3.2.
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VIIRS and MODIS Collocations

Our proposed approach includes the use of matching observations between two im-

agers. Since viewing angle and cloud-top altitude pose a significant challenge in selecting

matching observations between two imagers, we find a set of approximately ray-matched

collocations between VIIRS and MODIS. This is done by collecting observations from

these two instruments that are made within a ground distance of 250 m, at sensor zenith

and azimuth angle differences of less than 3 degrees, and at time differences less than 2

minutes. The majority of these collocations that meet these requirements occur at the high

latitudes. The somewhat loose time difference requirement is specified to allow for a small

amount of VIIRS/MODIS collocations at the equator. We remove all collocations where

the MODIS-VIIRS Continuity Cloud Mask (MVCM; Frey et al. 2020) did not observe a

cloud from both sensors. Furthermore we remove all collocations where the M15 band on

VIIRS and the band 31 on MODIS differ by more than 20 K. While differences are to be

expected due to differing spectral response functions, a difference as large as 20 K is more

likely due to the advection of cloud cover.

CLDPROP

As mentioned previously, CLDPROP is a project with the intent of creating a continuous

cloud climate record from MODIS and VIIRS. We use the CLDPROP CTP product as a

benchmark to evaluate the effectiveness of our approach in creating an intersensor consistent

product. The CLDPROP CTP is based on an optimal estimation (Rodgers, 1976) retrieval

described in Heidinger and Li 2017 and is similarly used in NOAA operations for VIIRS and

ABI as well as the PATMOS-x AVHRR climate record. CLDPROP CTP will be evaluated
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with respect to CALIOP and differences between MODIS and VIIRS for ray-matched

collocations will be assessed. Given the significant effort that has gone into creating the

CLDPROP products and the underlying algorithm it is based on, we believe it serves as a

reasonable benchmark to evaluate the consistency of our proposed approach.

3.3 Methodology

Neural Network Architecture and Training

For each imager, we train a neural network with a total of five fully connected (FC)

layers with 64, 32, 32, 16, and 1 units (Fig.3.3) . All except the last FC layer are followed

by rectified linear unit (ReLU) activation functions. The weights of the last three layers

are shared between both imagers and the first two layers are trained specifically for each

imager. The goal of this design is to incentivize the sensor-specific layers to learn similar

representations from each sensor. These representations are then passed to the shared layers

with the goal of reaching a similar prediction. We believe that sensor-specific layers are

necessary due to the differing nature of the features derived from VIIRS and MODIS.

The inputs to the neural network are made of up brightness temperatures (BTs) from

the channels in Table 2.1, spatial metrics derived from these channels, and ten features

from Numerical Weather Prediction (NWP) model output. Since the VIIRS and MODIS

resolutions differ, we calculate the spatial metrics from each instrument differently. For

VIIRS, we take a 5 pixel by 5 pixel array and calculate the difference between the central

pixel and both the minimum and maximum BT. We also include the standard deviation of

BT in the same 25 pixels. A 5 by 5 pixel array has an edge length of 3.75 km at nadir for
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VIIRS data and an edge length of 5 km at nadir for MODIS data. To bring the spatial metrics

into closer agreement in terms of area observed, we calculate the same spatial metrics for

MODIS over a 3 by 3 pixel array. The NWP information comes from 6-hour forecasts from

Climate Forecast System (CFS; Saha et al. 2014) model output at 6 hour intervals and are

interpolated linearly in both space and time. The exact fields used are the temperatures at

900, 700, 500, 300, 100, and 20 hPa as well as pressure and temperature at the surface and

tropopause.

Before training, we standardize the features by dividing by the mean and standard

deviation calculated from the training dataset. We also scale the predictand by dividing

by 1000. This is done to reduce issues related to the relative scales of the each feature and

generally improves performance and reduces training time of the neural network. In some

instances (described later in section 3.4) we fit a linear regression and adjust analogous

MODIS channels to more closely align with their VIIRS counterparts.

Each batch is comprised of 10,000 examples randomly sampled separately from each of

the VIIRS/CALIOP, MODIS/CALIOP, and VIIRS/MODIS datasets for a total of 30,000

examples per batch. The Adam optimizer (Kingma and Ba, 2015) is used with learning rate

of 0.005 and is reduced by a factor of 10 when there is no reduction in loss calculated on the

validation dataset after 3 epochs. Training is stopped after 5 epochs with no improvement

on the validation dataset. All models in this study finished training in less than 50 epochs.

Loss Function

LT otal = LV IIRS−CALIOP + LMODIS−CALIOP + αcwϕLc (3.1)
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Lc = |ŷV IIRS − ŷMODIS | + 1
N

N∑
i=1

∣∣∣Ai,V IIRS − Ai,MODIS

∣∣∣ (3.2)

wϕ = 1
|ϕ|
60 + 0.1

(3.3)

We use a loss function that incentivizes both low differences between predictions and

the CALIOP reference labels and low differences between predictions made by VIIRS and

MODIS for the ray-matched collocations (Eq 3.1). LT otal is the total loss comprised of the

absolute error between the VIIRS prediction and the CALIOP label (LV IIRS−CALIOP ), the

absolute error between the MODIS prediction and the CALIOP label (LMODIS−CALIOP ),

and a consistency term (Lc; Eq 3.2) multiplied by a constant (αc) and a latitude-dependent

weight (wϕ; Eq 3.3). Since the ray-matched collocation dataset under-represents the lower-

latitudes, wϕ acts to increase the contribution of Lc to LT otal from the relatively small

amount of low-latitude samples in our datasets. The consistency loss is a two component

loss where the first component is the absolute value of the difference between the VIIRS

and MODIS predictions (ŷV IIRS and ŷMODIS). The second component is the difference

between intermediate activations. Specifically, Ai,V IIRS and Ai,MODIS are the activations

of the last sensor-specific layer before the ReLU operation is applied. In this case, N = 32

since this layer has 32 units. Eq. 3.1 and Eq. 3.2 are both expressed for a single example,

and are averaged over the entire batch during training. During training, LV IIRS−CALIOP

and LMODIS−CALIOP are both calculated from datasets of collocations between CALIOP

and their respective imager. Lc is calculated from samples of the MODIS/VIIRS collocation

dataset.
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It may not initially be obvious why two components might be needed in Eq. 3.2. We

expect that the second component is beneficial since it provides more direct feedback to the

weights of the sensor-specific layers. We expect the first component is beneficial since there

is no upper or lower bound on the activations, and relatively small differences in activations

may still yield large differences in predicted CTP. Thus minimizing the second component

ensures that the preprocessing layers find a common representation, and the first component

ensures that any small differences in representations that remain do not yield large differences

in predicted CTP when passed through the shared layers. When the differences in activations

are removed, both intersensor differences and training time increased. When the differences

in predictions are removed, intersensor differences increased relative to including both

terms. We also note that removing the differences in activations increased the sensitivity of

our results to the chosen value of αc and required more fine-tuning to achieve reasonable

performance. It is likely that weighting each component of Lc differently could yield better

results. We found that equal weights worked reasonably well in our application, but we

caution that this may not be a generally applicable result and could depend on the relative

scales of each term.

3.4 Results

We divide our experiments into four separate categories defined by two characteristics.

The first characteristic is whether CALIOP labels from only a single imager or both imagers

are available during training. We refer to the single imager case where we only use VIIRS/-

CALIOP labels as single-source training (SST) and the multiple imager case where both
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VIIRS/CALIOP and MODIS/CALIOP labels are used as multiple-source training (MST).

The second characteristic is whether or not we restrict the neural networks to use only shared

channels between each sensor. We refer to the case where only information from the VIIRS

M14, M15 and M16 channels and their MODIS counter parts (MODIS-29, -31, -32) are

used as similar channel subsets (SCS). We then compare this to different channel subsets

(DCS) where we include additional channels in the MODIS models that do not exist on

VIIRS (MODIS-27, -28, and -30).

In each experiment, we assess performance over a range of values of αc to explore the

impact of Lc on the agreement with CALIOP and the consistency between the two imagers.

For each experiment we include the CLDPROP CTP product and a neural network baseline

(where possible) for comparison. In the MST-SCS and the MST-DCS experiments, the

baseline neural networks are trained independently for each sensor without Lc and without

shared layers using otherwise identical hyperparameters. In the SST-SCS experiment, a

MODIS neural network baseline cannot be trained due to the lack of MODIS/CALIOP

labels. In this case, we assume VIIRS and MODIS data are interchangeable and the VIIRS

baseline neural network is used to make predictions with MODIS data. This is not possible

for the SST-DCS experiment, since the size of the inputs and nature of the considered

channels differ between VIIRS and MODIS. Thus, our only baseline for the SST-DCS

experiment is the CLDPROP CTP product. These experiments are meant to represent a

variety of plausible scenarios when attempting to develop neural network models for one or

more imagers with the objective of creating a consistent record of derived cloud products.

In the SCS experiments there is an additional preprocessing step we apply before the

mean and standard deviation standardization. We fit a linear regression between the MODIS
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features and the VIIRS features (Fig. 3.4). This is done to account for biases between

channels and spatial metrics and to generally bring information from the two sensors into

closer alignment. A similar approach is applied in the Cloud CCI retrieval to apply a neural

network cloud mask trained with AVHRR data to other sensors such as MODIS and AATSR

(Sus et al., 2018). Our linear regression parameters are determined from the VIIRS/MODIS

ray-matched collocation dataset.

Multiple-Source Training

We first present the results from the MST-SCS and MST-DCS experiments. We choose

values for αc of 0, 0.01, 0.1, 0.3, 0.5, 1.0, and 2.0, and 5.0. αc = 0 is a special case where

the Lc term has no effect on LT otal and represents a scenario where there are no comparable

observations between two imagers, but both imagers make collocations with CALIOP. Thus,

there is no mechanism for explicitly enforcing consistency between the two neural networks

aside from the last two layers with shared weights. For each neural network we calculate

the MAE and bias between CALIOP and each imager individually, as well the MAE and

bias between the two imagers. All results are reported for the testing datasets (Fig. 3.2).

Figure 3.5 shows a summary of our MST experiments and a comparison of our results

to the CLDPROP CTP product. We observe that the value of αc has only small impact on

each model’s performance with respect to CALIOP (Fig. 3.5.a, b). It is only at large values

(αc = 2) that we begin to see MAE with CALIOP increase as consistency between imagers

is prioritized in the loss function. Across all values of αc we observe only small biases with

respect to CALIOP. The neural networks for MODIS show similar behavior (Fig. 3.5.c

and d). However, the DCS case on MODIS has a slightly lower MAE with CALIOP likely
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due to the use of channels not available to VIIRS. In all of these cases the baseline neural

networks without Lc and shared layers perform similarly.

When we consider the intersensor differences (Fig 3.5.e,f) it is clear that the neural

network baseline models fail to make reasonably similar predictions between both imagers.

The MST-DSC neural network baseline is the worst model in terms of intersensor differences

with a VIIRS/MODIS MAE more than twice that of CLDPROP. The baselines perform

similarly to the neural networks with shared layers and αc = 0. This may indicate that

shared layers are not enough to improve consistency between these models. However, once

αc is increased, the consistency improves considerably. The neural networks trained with Lc

reach parity with CLDPROP roughly where αc = 0.1. Further decreases in VIIRS/MODIS

MAE are observed with increasing αc. We expect that the DCS case requires a slightly

larger value of αc to reach parity with CLDPROP due to the need to deter the MODIS model

from exploiting variability only observed in channels not available to the VIIRS model.

We also note that the Neural Networks trained with Lc and non-zero αc can achieve lower

VIIRS/MODIS biases compared to CLDPROP.

Single-Source Training

Next, we summarize the results from the SST experiments to simulate a scenario where

only one of the two imagers (VIIRS) has labeled data from CALIOP (Fig.3.6). This is a

particularly difficult task since the only way the MODIS-specific layers can be trained is

through the Lc term where the goal is to match the intermediate activations and predictions

of the VIIRS model. We do not include the αc=0 since LT otal reduces to LV IIRS−CALIOP

which means that there is no mechanism for training the MODIS-specific layers in Fig.3.3.
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Starting with Fig. 3.6.a and b, we observe that the MAE and bias between VIIRS and

CALIOP are very similar both between the SCS and DCS scenarios, and also with the

MST experiments. Results differ greatly with the MST experiments when considering

the MODIS/CALIOP results for the SST experiments in 3.6.c and d. As αc is increased,

the MODIS/CALIOP MAE increases sharply. We expect this difference occurs due to

αcwϕLc making up an overall larger portion of LT otal compared to MST experiments.

The MODIS preprocessing layers are also only made to minimize differences with the

intermediate representations and predictions of the VIIRS layers, and there is otherwise no

mechanism to incentivize low MAE between MODIS and CALIOP as there is in the MST

experiments. This is representative of an undesirable solution to minimizing LT otal when

Lc becomes the dominant term. In such a case both models would be incentivized to predict

the same value for CTP regardless of whether it successfully minimizes LV IIRS−CALIOP

or LMODIS−CALIOP . In all VIIRS/CALIOP and MODIS/CALIOP metrics, the SST-SCS

neural network baseline slightly outperforms all models trained with Lc.

When considering the consistency between VIIRS and MODIS, the SST-SCS baseline

does not outperform CLDPROP or any of the neural networks trained with Lc. At αc = 0.01

the neural network matches the VIIRS/MODIS MAE of CLDPROP with near-zero bias.

Further improvements in VIIRS/MODIS MAE occur at larger values of αc although they

come with the expense of significantly reduced performance in the MODIS/CALIOP metrics.

These results imply that αc=0.01 or 0.1 may be an optimal choice since they roughly

match the MODIS/VIIRS consistency of CLDPROP with low bias and have reasonable

performance with respect to CALIOP. However, we stress that in a practical SST scenario,

one might not have access to a set of labeled data for the secondary imager, and one may
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not be able to determine an appropriate value of αc this way.

Time Series Analysis

The dataset used to evaluate the intersensor consistency has a few important caveats.

Due to the orbits of each imager and the requirements on obtaining an approximately

ray-matched collocations between them, there are several cases where this dataset is not

representative. This is particularly true in the low latitudes (Fig 3.2.g,h,j). A second issue is

that cloud motion, even at small time differences between MODIS and VIIRS, can impact

how mutually representative the ray-matched collocations are.

To provide an alternative perspective to the problem of VIIRS/MODIS intersensor

consistency, we collect a time series of CTP estimates from several of these neural network

models and CLDPROP starting in 2013 through the end of 2015. From each experiment

we select one neural network trained with Lc based on the trade off between each imager’s

performance with respect to CALIOP and the consistency between MODIS and VIIRS. We

then choose four regions defined by the latitude-longitude bounding boxes shown in Table

2.2. Data from VIIRS and MODIS are sampled to regularly spaced 0.05 degree grid daily

composites within each region. For each day, only the most nadir observations are used.

Predictions from the neural networks are masked by the MVCM cloud mask and only grid

points where both sensors observed the location within 1 hour of each other are retained.

Earth Mover’s Distance

In this instance, one cannot calculate grid-point-level differences between the two

imagers and expect representative results. Instead, we compare the overall distributions of
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CTP predictions for 20-day composites. We then use the Earth Mover’s distance (EMD;

often referred to as the Wasserstein metric) to calculate the differences in CTP probability

distribution functions (PDFs) between MODIS and VIIRS. EMD is a general approach for

quantifying differences between distributions and can be described in general terms as the

minimum cost of transforming one distribution into another. A thorough discussion of EMD

and its useful characteristics in several contexts can be found in Panaretos and Zemel 2019.

We use an implementation provided by version 1.7.1 of the SciPy python library Virtanen

et al. (2020). Our expectation is that this approach may be more robust to advection of cloud

cover within the specified domains that would otherwise affect grid-point-level differences.

Differences in the CTP distributions among the VIIRS and MODIS predictions are

shown in Fig.3.7 for the MST experiments. A low EMD value implies small differences

between CTP distributions. The neural network baselines perform reasonably well compared

to CLDPROP in all regions except region 3 and the MST-DCS baseline in region 4. The

MST-SCS neural network trained with the consistency loss has the lowest EMD in the

majority of 20-day composites particularly in the lower-latitudes (regions 1 and 2). The

MST-SCS neural network trained with Lc also appears to be the most consistent in time

despite not always being the approach with the lowest EMD. The MST-DCS neural network

trained with Lc shows comparable EMD to CLDPROP, and much lower EMD relative to

its respective baseline in the higher latitudes (regions 3 and 4). Some of these approaches

show some seasonality in their EMD values such as CLDPROP in region 4, the MST-SCS

baseline in region 3, and several models in region 2. This indicates that certain environmental

conditions could contribute to the differences observed between CTP algorithms for each

sensor.
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Similar characteristics of the EMD analysis are shown for the SST approaches in Fig.

3.8. All SST neural network approaches have lower comparable EMD with CLDPROP with

the exception of the SST-SCS baseline in regions 2 and 3. It also shows strong seasonality

in region 3 and more moderate seasonality similar to CLDPROP in region 4. The neural

networks trained with Lc have the lowest EMD values throughout with both the SCS and

DCS scenarios showing very similar results.

Cloud Fraction Differences

EMD is a useful metric for comparisons of PDFs. However, they do not illustrate in

a physically intuitive way the impact these differences may have on quantities frequently

used in trend analysis. To better put these results in perspective, we frame the previous time

series analysis in terms of differences in cloud fraction at various levels. For each 20-day

composite we calculate the frequency of high (0-400 hPa), middle (400-700 hPa) and low

(700-1050 hPa) level clouds. We then calculate the difference in these quantities for both

imagers.

Fig. 3.9. shows the differences in high middle and low cloud fraction between VIIRS

and MODIS for the MST experiments in the regions used previously in this analysis. As

suggested by EMD, the MST-DCS baseline model shows the largest differences at the upper-

and middle-levels occasionally exceeding 8% but has relatively moderate differences typi-

cally less than 4% at the lower levels. The other neural networks typically have differences

less than 4% at all levels, although the seasonality issues with the MST-SCS baseline in

region 3 are apparent. Disagreement in CLDPROP is relatively low at the middle-levels

with most differences less than 2%. CLDPROP has larger issues with upper-level cloud
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fraction in regions 1 and 4 and lower-level cloud fraction in region 1. Across all regions

CLDPROP tends to predict more lower-level clouds from VIIRS, and more upper-level

clouds in MODIS. In most cases, implementing the consistency loss when training neu-

ral networks appears to improve consistency between sensors. An exception is region 2,

where the MST-DCS neural network trained with Lc has larger differences compared to its

respective baseline, but smaller differences in other regions.

Fig. 3.10 shows the same differences with the SST experiments plotted with CLDPROP

as a reference. Comparisons of the SST-SCS neural network trained with Lc and its cor-

responding baseline are favorable. Region 1 is an example where these two approaches

are roughly comparable, but seem to be a slight improvement upon CLDPROP. Outside

region 1, the SST-SCS Baseline has numerous issues including large differences at all

levels in region 2, and seasonality in the upper and middle levels of region 3 and 4. On the

whole the SST-SCS neural network trained with Lc appears to be an improvement upon the

baseline and a slight improvement upon CLDPROP. The SST-DCS neural network mostly

performs similarly to the SST-SCS neural network with Lc with larger differences appearing

occasionally.

Changes in Relative Feature Importance

Much of the previous analysis demonstrates that we can bring two neural networks closer

in agreement by modifying the loss function to optimize for intersensor consistency. One

might expect that when Lc is added to the loss function, that the two neural networks are

incented to only rely on features that are more similar between the two instruments. With

this line of reasoning we might expect a decrease in the usage of spatial features that depend
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heavily on the resolution of the sensor, and how that resolution changes with increasing

viewing angle. Similarly we might observe an increase in the use of the 8.4 µm where the

spectral response functions between the instruments are most similar or a heavier reliance

on NWP model output which are the same for each imager.

To investigate how the usage of particular features changes with Lc, we use Layerwise

Relevance Propagation (LRP; Bach et al. 2015) to estimate feature importance. LRP

is a popular interpretability tool for neural networks and has been used in a variety of

applications in atmospheric science and remote sensing (Hilburn et al., 2021; Barnes et al.,

2020; Toms et al., 2020). There are several variants of the LRP rules that typically differ

on how relevance values are calculated throughout the model. We use the LRP ϵ = 1 rule,

which improves the numerical stability of the relevance values. Since interpreting LRP

relevance values can be a difficult task in itself, we simplify this analysis by expressing the

LRP relevance relative to the most important predictor. We do this by taking the absolute

value of the LRP output, and dividing by the largest relevance in each example. Thus, a

relative feature importance of 1.0 indicates that the feature was the most important and a

relevance of 0 implies that the feature was not at all important for CTP prediction. The

feature importance is calculated on the ray-matched collocation dataset so that comparisons

may be made between VIIRS and MODIS. We perform this analysis for the MST-SCS and

-DCS scenarios and compare the baseline neural networks with the neural networks trained

with Lc.

Figure 3.11 shows how the relevance values change after Lc is added to the loss function

in the MST-SCS experiments. There are a few unexpected changes evident in this analysis.

We observe an increase in reliance on low-level temperatures from NWP from both VIIRS
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and MODIS, but there are mixed results for upper-level temperatures as well as surface

and tropopause information. Both sensors show an intuitive decrease in the importance

of spatial features, which can be attributed to the different spatial resolutions. By far, the

largest change comes from the spectral features where there is a relatively large decrease in

the importance of M14/MODIS29 and M15/MODIS31 and a large increase in the usage of

M16/MODIS32. This is somewhat unintuitive due to the difference in spectral response

functions of these channels shown in Fig. 3.1. A potential explanation might be that neural

networks are relying more on a single spectral channel, and less on differences between

channels, where BT differences could be more heavily impacted by the specific SRFs of

each instrument. However it is unclear why the 12.0 µm channel is favored over others.

Figure 3.12 shows a similar analysis for the MST-DCS experiments. Again, we observe

a mix of changes in the usage of NWP features, and a general decrease in the usage of spatial

metrics. We also observe a similar pattern in the importance values of the M14/MODIS29,

M15/MODIS31 and M16/MODIS32. The channels specific to the MODIS models are

the 9.7 µm, 7.3 µm, and the 6.8 µm. As expected, when Lc is added to the loss function

the importance of the these channels dramatically decreases. Their impact, however, is

not completely eliminated and is comparable to several spatial metrics and NWP features.

Potential explanations could be that these features are still useful for matching CALIOP,

or can be used to correct for differences in the shared channels. We note that there are a

few rare cases where the MST-DCS neural network with Lc has lower differences in EMD

and cloud fraction compared to its SCS counterpart so it is plausible that these MODIS-

specific channels may be useful for matching VIIRS CTP despite not being shared with

VIIRS. Overall, while adding Lc to the loss function can sometimes improve the intersensor
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consistency from a number of different perspectives, it has changed the importance of

particular features in some unexpected ways for this application.

3.5 Discussion

We have explored the effectiveness of this methodology to improve intersensor con-

sistency among a CTP neural network developed for VIIRS and MODIS under a variety

of scenarios and compared it to standard neural network baselines and the CLDPROP

operational CTP product. This fairly simple approach can improve our ability to transition

ML algorithms to long-term records made up of multiple imagers in select circumstances

by reducing inconsistency in derived products. Compared to more standard neural network

applications such as in Kox et al. (2014), Håkansson et al. (2018) and White et al. (2021),

the proposed methodology requires adding sensor-specific input layers, an additional term

to the loss function, collecting coincident observations between two imagers, and choosing

an appropriate value of αc.

The MST cases represent the most favorable scenarios where both imagers have labeled

data. Since the distributions of labeled data for each instrument are different, it is reasonable

to expect that a neural network developed for each sensor may not be consistent in terms

of their predictions. We test this possibility and find that the baseline neural networks

perform relatively poorly in terms of intersensor consistency compared to CLDPROP despite

outperforming CLDPROP in their comparisons with CALIOP. Our proposed methodology

improves consistency in the ray-matched collocation dataset when the contribution of Lc is

increased by increasing the value of αc. This increase in consistency occurs for both the
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SCS and DCS experiments but at the expense of decreased performance with respect to

CALIOP.

When we examine the time series of EMD and cloud fraction differences for several

regions, we still see improvement for the MST models that are trained with Lc, but we

occasionally observed mixed results for the MST-DCS model. This may indicate that our

approach is sensitive to the distribution of collocations in the ray-matched dataset especially

considering that the MST-SCS and MST-DCS models achieve similar VIIRS/MODIS MAE

for the ray-matched dataset. The slight disparities in consistency between the lower- and

higher-latitudes of the cloud fraction analysis offer some evidence for this. Overall, the

models trained with the consistency loss (Lc) appear to have lower differences and less

seasonality high latitudes.

The SST cases illustrates a more challenging scenario where only a single imager (VIIRS)

has labeled data with CALIOP but we have matching observations with the secondary imager

(MODIS). We compared our methodology to a baseline that assumes that after a linear

adjustment to MODIS data, that MODIS and VIIRS data are interchangeable if we only

consider shared channels. This solution performs well with respect to CALIOP, but has

high intersensor differences between MODIS and VIIRS. The SST-SCS and -DCS models

outperform CLDPROP at moderate values of αc in all metrics in Fig3.6.

When considering the time series analysis of the SST experiments, we see that the

SST-SCS baseline has similar EMD values to CLDPROP but has issues with seasonality in

regions 2,3 and 4. Our proposed method consistently has lower EMD in all regions, but

these differences are not as easily seen in the cloud fraction analysis with the exception of

region 2. This indicates that the differences observed in the EMD analysis may not occur
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over the 700 and 400 hPa thresholds that define our high-, middle-, and low-level categories.

The SST-DCS neural network performs similarly to its SCS counterpart albeit with slightly

higher EMD in region 1 and occasionally larger cloud fraction differences.

If αc becomes too large, the MODIS predictions can be severely affected in all exper-

iments. For the MST experiments, we have a labeled dataset with both sensors so one

could monitor the performance of each neural network to ensure that increasing αc does

not degrade performance with respect to CALIOP. However, this is not the case with SST

experiments and it is not obvious when αc should stop increasing. Thus, one must look for

other indicators that the CTP performance might be degraded.

This points to a key challenge in transitioning this methodology to practice in SST

scenarios: how does one choose an optimal value of αc that improves intersensor consistency

without unrealistically narrowing the range of CTP predictions? To illustrate this point, we

find the predicted CTP distribution for the SST-SCS and MST-SCS experiments for a small

(0.01) and a large (2.0) value of αc. These predictions are made for the imager-CALIOP

collocations. Figure 3.10 shows that the MST CTP distributions are only slightly affected

under this range of values. However, the impacts are more severe for MODIS where αc is

large in the SST experiments. We observe that the overall CTP distribution for large αc

skews heavily towards the mean CTP despite the fact that this same model outperforms

CLDPROP with respect to CALIOP (Fig 3.6.c). Since we can expect the distribution of CTP

values between VIIRS and MODIS to be roughly similar, αc could be selected by inspecting

the changes in predicted CTP distributions. One could also collect a limited sample of

labeled data perhaps from ground-based or in-situ instruments and track the differences

with these data with increasing αc.
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There are few other important caveats that should be considered when interpreting the

analysis in this work. First, is that our ray-matched collocations are not perfectly representa-

tive of either the differences between imagers or the entire range of conditions viewed by

them. Despite our filters applied to the ray-matched dataset, it is still susceptible to advection

of cloud cover. Thus when minimizing Lc, we are to some degree lowering differences in

predicted CTP between different clouds in addition to mitigating real differences between

the two imagers. This may contribute to the narrowing of the CTP distributions at large αc.

When we apply a cloud mask to remove clear-sky observations, our ray-matched collocations

are subject to the errors of the MVCM, which can be quite large in the arctic regions (White

et al., 2021; Frey et al., 2020). Our time series analysis provides some indication that is

an issue due to the discrepancy between the intersensor MAE estimated in ray-matched

collocations compared to the EMD values and cloud fraction difference in the time series

analysis. Thus, the success of this methodology to other applications could be sensitive to

the quality and representativeness of the collocated dataset.

In the DCS analysis, we use a set of similar channels and add 3 channels to the MODIS

model that don’t exist on VIIRS. However, this approach does not necessarily require sharing

similar channels at all. Moreover, there is no requirement that the primary imager (VIIRS)

only use channels that are available on the secondary imager (MODIS). This is made

possible by the separate preprocessing layers included in our proposed model. We expect

the potential benefit of using non-shared channels depends on whether similar intermediate

representations can be learned by the neural network. One may need to increase the number

of units in each layer or the number of layers in the preprocessing sections of the neural

network for more disparate inputs. Although we have not specifically tested this here,
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we expect that using separate preprocessing layers for each sensor increases the capacity

of the neural networks to accommodate differences among the imagers. As more ML-

based algorithms are transitioned to high-stakes operational tasks and analyses of climate

records, future work is certainly needed to inform what solutions are optimal for mitigating

differences associated with changing observation platforms.

Given the large number of imagers that don’t have ray-matched collocations with other

imagers it may be useful to explore alternative ways of minimizing differences among

statistical cloud property models. In a portion of this work we use EMD to quantify

differences in CTP distribution. One option could be to replace the Lc term of Eq 3.1 with

the EMD of two distributions of comparable scenes. Using EMD might allow for the use

of observations at differing viewing angles, or larger time differences. Minimizing EMD

has been used in many ML applications, but has particularly seen wide use in Generative

Adversarial Models (GANs; Arjovsky et al. 2017). This would also be a path for extending

this approach to S-NPP and NOAA-20 VIIRS which make coincident observations at a time

difference of roughly 50 minutes. Such an approach could also be tested with ISCCP and

ISCCP-NG data where geostationary imager observations overlap significantly in space and

time but have very different viewing geometries.

3.6 Conclusions

In this analysis, we demonstrated that intersensor consistency in neural network cloud-top

pressure retrievals between two imagers can be improved in select circumstances by a simple

change to the loss function and by exploiting coincident observations between two imagers.
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The experiments performed illustrate a variety of scenarios regarding the availability of

labeled data for each imager and the spectral channels available to each imager. A key

challenge in implementing this methodology for the scenario where only a single imager has

labeled data is choosing an appropriate weight for the consistency term in the loss function

and evaluating the accuracy the model created for the secondary imager with no labeled

data. If the weight is set too high, we observe an unrealistic narrowing of the predicted

cloud-top pressure distribution. We suggest some strategies for choosing a reasonable value

for this parameter. Nonetheless, we show that the neural network approach can outperform

the CLDPROP cloud-top pressure product in terms of accuracy with respect to CALIOP

and intersensor consistency which is a major concern for satellite cloud climate records.

We expect that this methodology could be one pathway for improving the generalization of

ML-based remote sensing algorithms and facilitating their transition to climate records.
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VIIRS MODIS
Band Name Central Wavelength Band Name Central Wavelength

MODIS 27 6.76 µm
MODIS 28 7.33 µm

M14 8.55 µm MODIS 29 8.55 µm
MODIS 30 9.72 µm

M15 10.76 µm MODIS 31 11.03 µm
M16 12.01 µm MODIS 32 12.02 µm

Table 3.1: Shown are the infrared channels without solar contributions from VIIRS and
MODIS that are used in this analysis.
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Region Latitude Range Longitude Range
1 10S - 10N 140E - 160E
2 30S - 10S 0E - 20E
3 30N - 50N 110W - 130W
4 40N - 60N 10W - 10E

Table 3.2: Coordinates of the regions in which comparisons are performed between VIIRS
and MODIS CTP distributions.
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Figure 3.1: The normalized (to 1) spectral response functions of the VIIRS and MODIS
channels used.
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Figure 3.2: The distribution of collocations between VIIRS and CALIOP (a,b,c), MODIS
and CALIOP(d,e,f) and MODIS and VIIRS (h,i,j). Shown in each subplot title is the number
of total collocations in each dataset. Note the differences in color bars between each sub
plot.
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Figure 3.3: Schematic of the neural network used in this work. Each block (except the
last) represents a fully-connected layer followed by a rectified linear unit activation. Layers
specific to VIIRS are shown in red, MODIS in blue, and shared layers are shown in green.
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Figure 3.4: Comparison of spectral and spatial features derived from the VIIRS (y-axes)
and MODIS (x-axes). The scatter plots represent the values from each sensor before the
linear fit (blue) is applied to MODIS data. Only one out of every hundred points are shown
to ease visualization.
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Figure 3.5: Evaluation of the MST experiments for both the SCS and DCS scenarios.
Shown are the MAE (a,c,e) and bias magnitude (b,d,f) of each of the three pairings of
VIIRS, MODIS and CALIOP. Note that the x-axis intervals are not evenly spaced. Each
value of αc is run for three neural networks with randomly initialized weights that are
otherwise identical. Error bars indicate the highest and lowest value of the three models.
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Figure 3.6: Evaluation of the SST experiments. Shown are the MAE (a,c,e) and bias
magnitude (b,d,f) of each of the three possible pairings of VIIRS, MODIS and CALIOP.
Note that the x-axis intervals are not evenly spaced.
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Figure 3.7: Comparison of CTP distributions for geographic regions 1 (a), 2 (b), 3(c)
expressed in earth mover’s distance for the MST experiments. See table 2 for coordinates of
the geographic regions.
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Figure 3.8: Comparison of CTP distributions for geographic regions 1 (a), 2 (b), 3(c)
expressed in earth mover’s distance for the SST experiments. See table 2 for coordinates of
the geographic regions.
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Figure 3.9: Differences in the frequency of (CF) of high (a), middle (b) and low (c) level
clouds from 2013 to 2015 for the MST experiments. See Table 2 for the geographic
coordinates of regions 1,2, and 3.
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Figure 3.10: Differences in the frequency of (CF) of high (a), middle (b) and low (c)
level clouds from 2013 to 2015 for the SST experiments. See Table 2 for the geographic
coordinates of regions 1,2, and 3.
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Figure 3.11: Relative feature importance of each of the feature in the neural networks for
the MST-SCS experiment. Results are shown for MODIS (a) and VIIRS(b) over two values
of αc. Each value of αc is tested over three different random initializations of the neural
network represented by the error bars.
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Figure 3.12: Relative feature importance of each of the feature in the neural networks for
the MST-SCS experiment. Results are shown for MODIS (a) and VIIRS (b) comparing the
baseline neural network to one trained with the consistency loss (Lc). Each model is tested
over three neural networks with different randomly initialized weights.
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Figure 3.13: Distributions of CTP from the SST (a,c) and MST (b,d) experiments for VIIRS
and MODIS. Histograms are calculated over bins with 10 hPa width.
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