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Abstract

Taiwan regularly receives extreme rainfall due to seasonal Mei-yu fronts that are modified

by Taiwan’s steep and complex topography. One such case occurred between 1-3 June

2017 when a Mei-yu front produced severe flooding and landslides as a result of over 600

mm of rainfall in 12 hours near Taipei basin, and over 1500 mm of rainfall in 2 days

near the Central Mountain Range (CMR). This Mei-yu front event is simulated using the

Weather Research and Forecasting (WRF) model with halved terrain as a sensitivity test

to better understand the orographic mechanisms that modify the intensity, duration, and

location of extreme rainfall.

The reduction in terrain height in WRF produced a decrease in rainfall duration and

accumulation in Northern Taiwan and a decrease in rainfall duration, intensity, and ac-

cumulation over the CMR. The reductions in Northern Taiwan are linked to a weaker

orographic barrier jet resulting from a lowered terrain height. With a weaker barrier jet,

the front propagates south faster, decreasing the time rainfall accrues in Northern Taiwan.

The reductions in rainfall intensity and duration over the CMR are partially explained by

a lack of orographic enhancements to Mei-Yu frontogenesis near the terrain. A prominent

feature missing with the reduced terrain is a redirection of postfrontal westerly winds at-

tributed to orographic deformation. These orographically deforming winds converge with

prefrontal flow to maintain the Mei-Yu front. These orographic features will be further

explored using observations of heavy rainfall events captured during the Prediction of

Rainfall Extremes Campaign in the Pacific 2022 field campaign in Taiwan.
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3.9 Hovmöller Diagram of 1-hour rainfall accumulation along the line AA’ de-

noted in Fig. 3.7c using (a) QPESUMS, (b) WRF Control, and (c) WRF

Half-T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.10 Rainfall accumulation for 2 June 2017 for (a, d) QPESUMS, (b, c) WEPS-

Mean, and (e, f) ECMWF. (b) and (e) are forecasted rainfall accumulation

with models initialized at 0000 UTC 2 June 2017. (c) and (f) are forecasted

rainfall accumulation with models initialized at 1200 UTC 1 June 2017.

Wind barbs from (a, d) are from radar dual doppler synthesis at 2.5 km

AGL and wind barbs for (b, c, e, f) are for 10m AGL from their respective

models. Triangles represent area of maximum rainfall. Total water indicates

the total rainfall for the QPESUMS domain. . . . . . . . . . . . . . . . . . 41



xii

3.11 Highest theoretical CWB Warning issued based on rainfall accumulation

between 1200 UTC 1 June 2017 and 1200 UTC 3 June 2017 for (a) QPE-

SUMS, (b) WRF Control, and (c) WRF Half-T. . . . . . . . . . . . . . . . 42

3.12 Intensity and duration scatterplots for all (a, b, c) QPESUMS, (d, e, f)

WRF Control, and (g, h, i) WRF Half-T rain periods over land (a, d, g)

between 0 – 500 m (0-250 m), (b, e, h) between 500 – 2000 m (250 – 1000

m), and between 2000 – 4000 m (1000 – 2000 m) terrain height for WRF

Control (WRF Half-T) using contiguous duration with 1-hour gap allowance

in rainfall. Grey contours represent lines of constant rainfall accumulation

in mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.13 Bi-variate choropleth of contiguous duration and average rain rate of the

highest rainfall accumulating rain period for each grid point for (a) QPE-

SUMS, (b) WRF Control, and (c) WRF Half-T. (d) is the reference color

matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 A schematic diagram shows the surface (black solid arrows) and 900 hPa

(red solid arrows) flow patterns with the barrier jet (thick red solid arrows).

(a) The shallow (<1 km) Mei-yu front is anchored over the northern side of

the Yang-Ming Mountains for almost 8 h during the morning of 2 June 2017

(0200–1000 LST 2 June). At the 900 hPa level, the southwesterly barrier jet

converges with the northwesterly flow in the southwestern flank of the Mei-

yu frontal cyclone around the northern tip of Taiwan. (b) Around noontime,

the Mei-yu front finally moves southward over the Yang-Ming Mountains

into the Taipei basin and converges with the southwesterly barrier jet over

the Taipei basin. From Tu et al. (2022). . . . . . . . . . . . . . . . . . . . . 67

4.2 900 hPa wind speed and wind barbs for (a, c) WRF Control and (b, d)

WRF Half-T at (a, b) 1800 UTC 1 June 2017 and (c, d) 0000 UTC 2 June

2017. Cross sections are taken along lines BB’ and CC’ at 1800 UTC 1

June 2017. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



xiii

4.3 900 hPa perturbation heights and wind barbs at 1800 UTC 1 June 2017 for

(a) WRF Control and (b) WRF Half-T. . . . . . . . . . . . . . . . . . . . . 69

4.4 Cross sections (a, c, e) BB’ and (b, d, f) CC’ at 1800 UTC 1 June 2017 of

(a, b) altitude relative Froude number, (c, d) tangential wind speed and dry

isentropes, and (e, f) orthogonal wind speed and vertical velocity contours

every 1 ms−1 for WRF Control. The black dashed line indicates the coastline. 70

4.5 Same as Figure 4.4 but for WRF Half-T. . . . . . . . . . . . . . . . . . . . . 71

4.6 Wind barbs at 900 hPa, modified Parfitt et al. (2017) frontal diagnostic at

900 hPa, and rain accumulation over the next hour in mm at 1900 UTC 1

June 2017 for (a) WRF Control and (b) WRF Half-T. . . . . . . . . . . . . 72

4.7 Same as Figure 4.6 but at 2100 UTC 1 June 2017. . . . . . . . . . . . . . . 73

4.8 Same as Figure 4.6 but at 2300 UTC 1 June 2017. . . . . . . . . . . . . . . 74

4.9 Trajectories of release group 1 released at 900 hPa for (a, c) WRF Control

and (b, d) WRF Half-T. Colors correspond to the time at which trajectories

were released relative to model forecast hour. . . . . . . . . . . . . . . . . . 75

4.10 Same as Figure 4.9, but for release group 2. . . . . . . . . . . . . . . . . . . 76

4.11 Same as Figure 4.9, but for release group 3. . . . . . . . . . . . . . . . . . . 77

4.12 Trajectories released at 875, 900, and 925 hPa for (a, c, e) WRF Control

and (b, d, f) WRF Half-T from (a, b) release location 1, (c, d) release

location 2, and (e, f) release location 3. Green(red) trajectories indicate

parcels that do (do not) enter northern Taiwan as indicated by the grey

region bound between 24.75◦N and the northern coastline. . . . . . . . . . . 78

4.13 Average 900 hPa geopotential height anomaly and average wind barbs be-

tween 2100 UTC 1 June 2017 – 0300 UTC 2 June 2017 for (a) WRF Control

and (b) WRF Half-T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.14 950 hPa wind direction (Fill), Parfitt et al. (2017) frontal diagnostic (Con-

tour), and wind barbs for WRF Control at (a) 0030 UTC 3 June 2017, (b)

0130 UTC 3 June 2017, and (c) 0230 UTC 3 June 2017. . . . . . . . . . . . 80



xiv

4.15 Same as Figure 4.14, but for WRF Half-T at (a) 2130 UTC 2 June 2017,

(b) 2230 UTC 2 June 2017, and (c) 2330 UTC 2 June 2017. . . . . . . . . . 81

4.16 Same as Fig. 4.14c, but at (a) 925 hPa and (b) 975 hPa. . . . . . . . . . . . 82

4.17 Same as Fig. 4.15c, but at (a) 925 hPa and (b) 975 hPa. . . . . . . . . . . . 83

4.18 Same as Figure 4.14, but with rainfall accumulation in mm over the next

hour (Fill). Lines in (c) represent cross sections used in Figures 4.20, 4.21,

and 4.22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.19 Same as Figure 4.15, but with rainfall accumulation in mm over the next

hour (Fill). Lines in (b) represent cross sections used in Figures 4.20, 4.21,

and 4.22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.20 Zonal cross sections along DD’ in (a, c) Figure 4.18 and (b, d) Figure 4.19.

(a, b) represent zonal cross sections of height-relative Froude number and

(c, d) represent zonal cross sections of zonal wind speed with dry isentropes.

The dashed black line indicates the coastline. . . . . . . . . . . . . . . . . . 86

4.21 Same as Figure 4.20, but for cross section EE’ in (a, c) Figure 4.18 and (b,

d) Figure 4.19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.22 Meridional cross sections along FF’ in (a, c) Figure 4.18 and (b, d) Figure

4.19. (a, b) represent meridional cross sections of zonal wind speed with

dry isentropes and (c, d) represent meridional cross sections of meridional

wind speed with vertical velocity. The array of dots represent the trajectory

release locations in Fig. 4.23, 4.24, and 4.26 . . . . . . . . . . . . . . . . . . 88

4.23 Trajectory paths for release locations in Figure 4.22 for WRF Control in the

(a) X-Y plane and (b) X-Z plane. The dashed line indicates the “stitched”

release points whereby lines to the west represent backwards trajectories

and lines to the east represent forwards trajectories. . . . . . . . . . . . . . 89

4.24 As in Fig. 4.23, but for WRF Half-T. . . . . . . . . . . . . . . . . . . . . . 90



xv

4.25 A schematic representing the Lagrangian Froude number. At initial time,

t0, a parcel with a characteristic wind speed, height, and Brunt-Väisälä
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Chapter 1

Introduction

1.1 Defining Extreme Rainfall

Rainfall is a phenomenon almost ubiquitous across the world. The effects of a single

rainfall event could be momentous, signaling the end of a drought (Antofie et al. 2015) or

putting a stop to a wildfire (Reid et al. 2010). It can also be disastrous, creating flash

floods (Chi and Jian 2008) or over watering crops (Liu et al. 2022). As rainfall scales from

light to extreme, the danger and impact associated with such an event amplifies. The

classification of “extreme” rainfall is tricky, however. Although rainfall accumulation can

be viewed as an objective variable for determining extreme rainfall, it’s actually rather

contextual and requires the proper context.

For example, the great Colorado flood of September 2013 was the result of rainfall ex-

ceeding 450 mm over an 8-day period (Gochis et al. 2015). The floods as well as numerous

landslides proved to be a socio-economical nightmare leading to emergency evacuations,

multiple fatalities, and damages with an estimated cost over $2 billion. Records were shat-

tered during this event with a rain gauge at Fort Carson, Colorado recording a 24-hour

rainfall maximum of 316 mm between the 12th and 13th and the nearby National Weather

Service forecast office in Denver reporting the wettest September on record (NWS 2015).

Although this event was a climatological extreme for Colorado, when contrasted with a

region like Taiwan, the rainfall totals pale in comparison. A rain gauge climatology for
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the southern city Kaohsiung, Taiwan reveals average rainfall accumulation for the month

of June to be just under 400 mm, nearing the extremes of the great Colorado floods

(Jong et al. 2011). The joint Terrain Induced Monsoon Rainfall Experiment (TiMREX) /

Southwest Monsoon Experiment (SoWMEX) of 2008 highlight a local extreme in Kaoh-

siung capturing approximately 1200 mm of rainfall during the month of June. Despite

the rain associated with the great Colorado floods of September 2013 shattering multiple

local records, it would be treated as commonplace in Taiwan.

We find that although “extreme” rainfall is highly contextual, commonalities can be

found within each extreme rainfall event. For instance, extreme rainfall in Colorado may

have similarities to extreme rainfall in Taiwan with both environments being regions of

complex terrain known for orographically-enhanced precipitation. By breaking individual

events into their characteristic components, whether they be sources of lift, moisture,

instability, etc., an objective method of studying extreme rainfall can be used to improve

our understanding of extreme rainfall formation, prediction, and effects.

One of the formative frameworks for understanding extreme rainfall was proposed by

Doswell et al. (1996) whereby precipitation, P , could be expressed as:

P = RD (1.1)

Where R is the rainfall intensity and D is the duration of the rainfall. With these two

variables, precipitation can be defined by scaling rainfall intensity and duration to create a

spectrum of light to extreme rainfall with absolute magnitudes varying by climatic region.

To understand the ingredients contributing to rainfall, intensity and duration can be

expressed as:

R = E(
ρ

ρw
)(wqv) (1.2)

D =
Ls

Cs
(1.3)

Where E is precipitation efficiency, ρ/ρw is a relative moisture density, wqv is a vertical

moisture flux, Ls is a storm length scale, and Cs is a storm relative motion vector. Rainfall
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intensity becomes a function of high vertical forcing of moisture such as observed within a

deep convective core. Rainfall duration is a function of high horizontal forcing of moisture

such as that replenishing broad stratiform precipitation. Therefore, duration can increase

either through broadening the spatial coverage of a storm or through stalling a storm over

a location.

These ingredients reveal that individual storm types can be placed on the intensity and

duration spectrum to compare with one another (Fig. 1.1). Deep convective cores are likely

to inhabit the high intensity, low duration side of the spectrum, whereas stratiform rainfall

might inhabit the high duration, low intensity side of the spectrum. Tropical cyclones may

lead to extreme rainfall through exhibiting both high intensity and duration. The great

Colorado flood of September 2013 was characterized by orographically lifted, stratiform

rainfall with embedded convective cells (Gochis et al. 2015) similar to multiple intensive

observation periods (IOPs) as part of TiMREX/SoWMEX (Jong et al. 2011). Therefore,

there is a necessity to incorporate topography into this framework. The overarching goal

of this research will be determining how topography modifies not only the intensity and

duration of rainfall, but the location of it as well. By understanding this modification, the

ability to predict and forecast orographic precipitation improves.

1.2 Taiwan as a Precipitation Laboratory

One of the major centers for studying extreme orographic precipitation is Taiwan due to

the steep topography that makes up much of the island (Fig. 1.2). Two major mountain

ranges, the Zhongyang Range, or Central Mountain Range (CMR), which runs south-

southwest to north-northeast and the Xueshan Range, also referred to as the Snow Moun-

tain Range (SMR), which runs southwest to northeast, cover roughly two thirds of the

entire island with complex terrain. The maximum terrain height on the island is found

at Yushan, or Jade Mountain, (23.47◦N, 120.96◦E) with an altitude of 3952 m. With

such steep topography isolated to a small island in the Pacific Ocean, Taiwan makes for

an ideal location to study orographic precipitation. Precipitation in the most densely
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populated region of Taiwan, Taipei basin (25.03◦N, 121.57◦E), is often heavily influenced

by the nearby SMR and the mountains found at Yangmingshan National Park (25.17◦N,

121.55◦E) (Tu et al. 2022).

With such complex topography, Taiwan has hosted numerous field campaigns revolv-

ing around orographic precipitation. Major field campaigns include the Taiwan Mesoscale

Experiment (TAMEX) in 1987 (Kuo and Chen 1990) and the TiMREX/SoWMEX exper-

iments in 2008 (Jong et al. 2011). One of the most recent projects was the Prediction

of Rainfall Extremes Campaign in the Pacific (PRECIP) which has adopted the intensity

and duration framework as a guiding principle (PRECIP 2022). Each campaign seeks to

better understand extreme rainfall in the context of Taiwan.

One reason for multiple campaigns focused on Taiwan is highlighted through a limi-

tation of the intensity and duration framework. Studying the intensity and duration of

rainfall requires guaranteed rainfall. While the floods in Colorado may have been ideal

for study, storms of that caliber are not always guaranteed during a season. Taiwan, on

the other hand, is almost guaranteed to receive rainfall during the warm season as seen

during the TiMREX field campaign, though locally, Taiwan splits the warm season into

the Mei-yu season that runs from mid-May to the end of June and the typhoon season

that runs from July to September. In a climatology of rainfall from Henny et al. (2021),

it was found that while the peak daily rainfall average was found in the typhoon season,

the 20-day running average daily rainfall was found in the Mei-yu season with a value of

12.5 mm/day over the entirety of Taiwan (Fig. 1.3).

1.3 The Mei-yu

Translated from mandarin, Mei-yu means “plum rain” based on the seasonal ripening of

plums near the Yangtze River in China that are often soaked in rain as they fall (Allen

et al. 2015). Although first named in China, this season extends to much of East Asia with

other names for it being the Baiu/Tsuyu in Japan and the Changma/Jangma in Korea.

The Mei-yu signifies a transitional period of the waning wintertime northeast monsoon
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and strengthening summertime southwest monsoon (Chen 1992). The southwest monsoon

is relatively warm and transports moisture from the equator to the Bay of Bengal and

then to Taiwan and the rest of East Asia (Chang and Chen 1995). The monsoonal flow is

typically southwesterly as a result. Opposite of the southwest monsoon is the northeast

monsoon dominated by relatively drier and cold northeasterly flow originating from the

Siberian high-pressure system (Jhun and Lee 2004).

The boundary between these two monsoons forms the Mei-yu front, a quasi-stationary

moisture front which is the predominant source of rainfall during the Mei-yu season (Chen

1992). Although temperature gradients might be appreciable while the front is over China,

once the front passes south of the Chinese coastline into the Taiwan Strait, the warm

waters act to weaken the temperature gradients (Chen 1992; Chen et al. 2007). Upon

entering Taiwan, the dominant forms of Mei-yu frontogenesis become convergence and

deformation while baroclinic terms become negligible or frontolytic (Chen et al. 2007).

This convergence and deformation stems from a wind shift line spanning from the surface

to 1 km height along the leading edge (Chen 1992; Chen and Hui 1990; Chen et al. 1989;

Trier et al. 1990). A cross section through a Mei-yu front from Ke et al. (2019) using multi-

Doppler synthesis from Taiwan’s operational radar network reveals that the prefrontal

southwesterlies rise over the postfrontal northeasterlies to produce intense rainfall along

the front with more stratiform rainfall to the north of the front (Fig. 1.4).

Multiple mechanisms enhance rainfall associated with Mei-yu fronts including mesoscale

convective systems, or MCS, that form and propagate along the Mei-yu front (Zhang et

al. 2000; Houze 2004), as well as low-level jets (LLJ) that enhance moisture transport

and frontal convergence. The three low-level jets that play the largest role in Mei-yu front

rainfall are the synoptic low-level jet (SLLJ), marine boundary layer jet (MBLJ), and the

barrier jet (BJ). The SLLJ was extensively explored during TAMEX and TiMREX and

is often found between 900-600 hPa to the south of the Mei-yu front (Chen et al. 2022).

As the frontal cyclone deepens, the SLLJ develops through the Coriolis force acting on

cross-contour ageostrophic winds (Chen et al. 2022; Chen et al. 1997). The MBLJ is
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often found near 925 hPa over water to the south of the Mei-yu front (Chen et al. 2022).

Formation of the MBLJ is like the SLLJ with sub-synoptic pressure gradients aligning

cross-contour ageostrophic winds toward the Mei-yu trough (Chen et al. 2022, Tu et al.

2019). The barrier jet is an orographically induced jet found at 1 km ASL near Taiwan

(Chen et al. 2022). These jets are most common in the prefrontal sector of Mei-yu fronts

as southwesterly flow collides with the CMR, orographically deforms, and then converges

with the southwesterly flow downstream near northwestern Taiwan (Fig. 1.5) (Chen et al.

2022; Li and Chen 1998). Unlike the SLLJ and MBLJ, the barrier jet is not necessarily

formed through pressure gradients associated with the Mei-yu trough. They can, how-

ever, still interact with the front as seen in Fig. 1.6 where a barrier jet collides with a cold

pool ahead of a Mei-yu front, slowing the progression of the front (Ke et al. 2019).The

interaction of the barrier jet with the Mei-yu front was a focal point of the TAMEX field

campaign, with implications for densely populated regions of Taipei Basin.

Another way in which orographic modification of the Mei-yu front occurs is the split-

ting of the front upon approach toward the SMR (Chen 1992). This splitting produces a

windward front that resides west of the CMR and a leeside front that resides east of the

CMR, each propagating south with the windward front being the most extreme from a

rainfall perspective (Chen et al. 1992). In a climatology from Wang et al. (2012) of aver-

age 6-hour rain accumulation distribution relative to windward Mei-yu front placement,

rainfall was found to be linked not only to front placement, but also topography (Fig. 1.7).

Frontal placement, however, was set at the western coastline as it is difficult to pinpoint

the Mei-yu front on land. Therefore, as to how the fronts are modified by orography as

they propagate south over land through the mountainous island is still an active research

topic.

1.4 Research Objectives

A Mei-yu front case that produced extreme rainfall throughout Taiwan occurred between

1-3 June 2017. This Mei-yu front made landfall in northern Taiwan producing intense
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rainfall over Taipei Basin before propagating south into central Taiwan where rainfall

persisted on the windward slopes of the CMR for the entirety of the observation period.

Prior studies on this event have already determined there to be orographic modification

to rainfall associated with the Mei-yu front in northern Taiwan with an active barrier

jet found in the prefrontal sector of the front (Tu et al. 2022; Chen 2022), yet there is

still more to explore with regards to the intensity and duration of rainfall relative to the

topography.

This study will expand on prior works to better understand how orography modified

the location, intensity, and duration of rainfall associated with the 1-3 June 2017 Mei-yu

front. To address this broader goal, the specific science objectives are to:

1. Determine how the orography modified the Mei-yu front, comparing the more studied

interactions in northern Taiwan with the less defined interactions in central Taiwan.

2. Understand the impact of this frontal modification on rainfall intensity, duration,

and location.

3. Compare orographically modified rainfall in northern versus central Taiwan.

Section 2 will discuss the data and methods employed in this study to isolate topographic

influences on rainfall during this extreme rainfall event. Section 3 will provide an overview

of the 1-3 June 2017 Mei-yu front case. Section 4 describes results for both northern and

central Taiwan. Section 5 will provide a discussion of the results and section 6 will include

conclusions of this study as well as plans to continue this work in the future.
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1.5 Figures

Figure 1.1: Rainfall intensity and duration framework (PRECIP 2022).
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Figure 1.2: Terrain elevation map of Taiwan. The dashed black line indicates the Central
Mountain Range and the dashed red line indicates the Snow Mountain Range. The red
circle indicates the location of the Yangmingshan National Park.
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Figure 1.3: The mean total (green) and extreme (red) rainfall for each day of the year,
with color-coded seasons. The Taiwan Climate Change Projection Information and Adap-
tation Knowledge Platform rain data are averaged spatially. The thick lines denote 20-day
running means. ER is defined based on a spatially and seasonally varying 99th-percentile
threshold so as not to eliminate cold-season extreme events. From Henny et al. (2021).

Figure 1.4: Retrieved result at 1200 UTC 11 June 2012: (a) vertical velocity (colour
shaded, unit: m s−1) at 5 km and convergence area (green contour, interval is 0.5 × 10−3

s−1) at 1 km; (b) vertical cross-section of radar reflectivity (color shaded, unit: dBZ)
and the horizontal wind speed (contour lines); (c) cross-section of vertical wind (colour
shaded, unit: m s−1) and wind vector relative to the system motion. Adapted from Ke
et al. (2019).



11

Figure 1.5: A schematic diagram for the barrier jet formation. (a) The large-scale low-level
flow pattern, (b) the mesoscale airflow near the 1-km level, and at (c) 2.5-km level over
the Taiwan area are shown. The heavy line, open arrow, and heavy arrow represent the
low-level pressure trough, upstream southwesterly flow, and barrier jet, respectively. The
distribution for the geopotential height in (a), local sea level pressure pattern (dashed)
in (b) and streamlines (solid) in (b) and (c) are also shown. Adapted from Li and Chen
(1998).
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Figure 1.6: Schematic diagrams to demonstrate the mechanism of the extremely heavy
rainfall event. (a) Prefrontal convection forms a trailing stratiform type precipitation
over the ocean, and the line convection is triggered due the cold outflow encountering
a warm and humid southwesterly flow; (b) the strengthened cold pool and enhanced
barrier jet repeatedly triggered the Y-shaped echo line convection, then merge with the
main convection to form a PS-type precipitation over northern Taiwan. The location
of the Mei-yu front and the warm/humid southwesterly flow (red arrow) illustrate the
environmental condition of the synoptic scale over Taiwan. The location of the cold pool
and the orography in northern Taiwan blocks the displacement of the main convection.
From Ke et al. (2019).
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Figure 1.7: The averaged 6-h rainfall distribution (mm, scale on right) over Taiwan during
May–June 1991–2006 when the surface Mei-yu front is within each 0.5◦-latitude interval
(as marked by gray box) from (a) 25◦–25.5◦ to (h)21.5◦–22◦N (north to south). From
Wang et al. (2012).
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Chapter 2

Data and Methods

2.1 Case Overview

The European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5

(ERA5) was used to provide the synoptic and mesoscale contextualization of this case

study. ERA5 is an atmospheric reanalysis dataset produced by the Copernicus Climate

Change Service at ECMWF on a 0.25◦ latitude-longitude grid at 1-hr time intervals.

Data from 1200 UTC 1, 2, and 3, June 2017 was accessed using the National Center for

Atmospheric Research (NCAR) – Research Data Archive (European Centre for Medium-

Range Weather Forecasts 2019). On the synoptic scale, zonal wind speed, meridional

wind speed, geopotential height, relative vorticity, and specific humidity at 300 hPa, 500

hPa, and 850 hPa were obtained from ERA5. ERA5 mean sea level pressure and 925 hPa

equivalent potential temperature (θe), zonal wind speed, and meridional wind speed were

obtained for a mesoscale analysis of this event.

Observational datasets provided by the Central Weather Bureau of Taiwan (CWB)

include radiosondes and operational radar data. The radiosonde data was from CWB’s

Taipei launch station (121.52◦E, 25.04◦N) for 1200 UTC 1 June 2017, 0000 UTC 2 June

2017, and 1200 UTC 2 June 2017. The data was used to create Skew-T diagrams using

MetPy (May et al. 2022) to provide vertical profiling of environmental conditions for the

event. The operational radar network of Taiwan consists of 12 radars, 4 S-band radars and
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8 C-band radars (Fig. 2.1). To track movement of the front close to Taiwan using radar

reflectivity, data from the S-band Radar Code of Wu-Fenshan (RCWF) radar (121.77◦E,

25.07◦N) and Radar Code of Chigu (RCCG) radar (120.09◦E, 23.15◦N) were used. Raw

RCWF and RCCG files first had to be converted into CfRadial format (Dixon et al.

2016) using the Lidar Radar Open Software Environment – “Topaz” (Bell 2022). Once

converted, data was plotted using the Python ARM Radar Toolkit (Helmus and Collis

2016).

Data from the Himawari-8 geostationary weather satellite operated by the Japanese

Meteorological Agency was used to track the horizontal and vertical extent of the Mei-yu

frontal system beyond Taiwan’s operational borders. The 10-minute level-1 full-disk grid-

ded product used in this study was by the P-Tree System, Japan Aerospace Exploration

Agency. Channels 1, 2, and 3 reflectance was used to create corrected true color imagery

(LoneSky 2020) and channel 10 brightness temperature was used for low-level water vapor

inferences.

2.2 Quantitative Precipitation Estimation and Segregation

Using Multiple Sensors (QPESUMS) System

The QPESUMS system is a 10-minute frequency rain gauge corrected rain rate and rainfall

accumulation product produced by the CWB (Chang et al. 2021). The system integrates

reflectivity-inferred rain rates from 12 operational radars (Fig. 2.1) to create a gridded rain

rate product which is corrected using the 1000+ rain gauges on the island. A flowchart

of the operational QPESUMS system is shown in Figure 2.2. The 1-hour accumulation

precipitation product with 0.0125◦ x 0.0125◦ resolution spanning 120◦ - 123.5◦ E and 20◦

– 27◦ N was used for its coverage, accuracy over Taiwan, and ability to quantify rainfall

within rain bands associated with the Mei-yu front. An accompanying terrain elevation

dataset provided by CWB with similar resolution and horizontal extent as the 1-hour

accumulation QPESUMS product was also used for topographical subdivision of rainfall

accumulation.
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2.3 Intensity and Duration Framework

To translate the Doswell et al. (1996) intensity and duration framework into a methodology

for categorizing extreme rainfall using the QPESUMS dataset, the following method was

used:

1. For a given grid point, build a time series of 1-hour rainfall accumulation over a

48-hour window.

2. Define rain periods within the 48-hour period where minimum rainfall for any hour is

at least 0.25 mm. The 0.25 mm criteria is based on QPESUMS minimum detectable

rainfall of 0.25 mm. To account for pauses in continuous rainfall that might be

the result of slight shifts in rainfall location, consecutive rain periods with gaps in

rainfall of 1 hour are combined into one rain period.

3. Each rain period has a total accumulation of rainfall and a contiguous duration which

can both be used to define an average rain rate in mm/hr. The contiguous duration

and average rain rate act as proxies for the duration and intensity ingredients as

part of Doswell et al. (1996).

The reasoning behind the 1-hour gap allowance is seen in Figure 2.3. Figure 2.3a-d shows

the results of placing all rain periods over land using the QPESUMS dataset onto a

duration and rain rate grid. Four different methods of defining duration were tested:

noncontiguous duration where any time gap is allowed, contiguous duration with no gap

allowance, contiguous duration with 1-hour gap allowance, and contiguous duration with

2-hour gap allowance. The choice to use 1-hour gap allowance was made as it best fits the

objectives of this study. Noncontiguous duration strongly diluted the maximum average

rain rate achievable and resulted in too few rain periods. No gap allowance results in far

too many rain periods that if this data is broken up into terrain height bins (e.g., 1500

– 2000 m in Fig. 2.3e-g), the relative density remains is focused towards low rain rates

and durations with little spread. Contiguous duration with 2-hour gap allowance begins
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to dilute high rain rate rain periods. The 2-hour gap is also a long period of no rainfall

and begins to lose physical meaning. For example, if a rain period is found within a single

convective cell, a 2-hour gap in rainfall is more likely to be caused by a second source of

rainfall rather than the original convective cell moving back over the same grid point. For

these reasons, the 1-hour gap allowance strikes a balance between number of rain periods,

physical meaning, and dilution of high rain rates. For the remainder of this study, all

instances of duration and intensity will be in the context of contiguous 1-hour gap allowed

duration and average rain rate.

2.4 Weather Research and Forecasting (WRF) Model

The WRF model is a nonlinear, non-hydrostatic, full physics numerical weather prediction

model developed by members of NCAR, NWS, and the meteorological community. For

this study, version 4.1.3 is used (Skamarock et al. 2019). Parameterization schemes used

can be found in Table 1.

The model was initially run with 40 ensemble members using two nested grids, each

with 50 vertical levels, and an inner and outermost grid resolution of 3-km and 9-km,

respectively (Fig. 2.4). The model was initialized using model data from the Global

Forecast System. These members were run from 1200 UTC 1 June 2017 to 1200 UTC

3 June 2017 with 12-hour timesteps for the outermost grid and 3-hour timesteps for the

innermost grid .

Once an ensemble member was found that most resembled the observations for this

event with regards to timing and accumulation of rainfall, the NDOWN program was used

on that member to downscale a third, innermost grid with horizontal resolution of 1 km

and 15-minute timesteps (Fig. 2.4). The reasoning for this third grid is that mesoscale

features related to the complex terrain would not be resolved on a 3-km grid with duration

shorter than a 3-hour window. As a test of orographic influence for this study, the NDOWN

program was repeated using the same 1-km resolution and 15-minute timestep, but with

halved terrain for the innermost grid only. The gradient in Taiwan’s terrain height is
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large compared to much of the world with mountain peaks near 4 km height a short

distance away from the coastline. By placing this event in a halved terrain environment,

the results are more applicable to regions with more gradual and shallow topography.

Since this study focuses on changes in rainfall associated with changes in topography, only

results from this innermost grid will be considered. These 1-km resolution model runs will

hereafter be labeled Control and Half-T. All analysis of WRF data was done using MetPy

(May et al. 2022) and WRF-Python (Ladwig 2017).

2.5 Read/Interpolate/Plot (RIP) v4.7

RIP is a Fortran program produced by NCAR for the purpose of post-processing WRF

and NCAR Mesoscale Model v5 data. The trajectory analysis function of RIP was used

for this study. RIP is capable of releasing trajectories forward and backward in time in

sub-grid scale coordinates and output diagnostic variables in sub-timestep intervals. The

strength of RIP over other trajectory analysis programs is its high efficiency in processing

WRF data and ability to produce large numbers of trajectories in short amounts of time.
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2.6 Figures and Tables

Figure 2.1: The weather radar network in Taiwan. Green and orange plus symbols and
four-letter identifiers (IDs) indicate the operational S- and C-band radars, respectively.
RCYU and RCYI are C-pol radars that have not been deployed as of July 2020 and
RCMD is a special C-pol radar collocated with RCWF for the calibration, training, and
scan strategy design of the C-pol radars. The white region shows the maximum range of
the radar coverage and gray shades the ground elevation. The black dotted line indicates
the Snow Mountain Range and the dashed line the Central Mountain Range. From Chang
et al. (2021).
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Figure 2.2: An overview flowchart of the Taiwan QPESUMS system. From Chang et al.
(2021).
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Figure 2.3: Intensity and duration scatterplots for all QPESUMS rain periods (a-d) over land and (e-g) between 1500 – 2000 m
terrain height, with different methods of defining duration. The durations are defined as (a, e) noncontiguous duration, (b, f)
contiguous duration with no allowance for gaps in rainfall, (c, g) contiguous duration with 1-hour gap allowance in rainfall, and (d,
g) contiguous duration with 2-hour gap allowance in rainfall. Coloring is based on relative density of points.
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Figure 2.4: Horizontal extent of the three WRF domains. The blue, orange, and red boxes
represent the 9, 3, and 1 km grids, respectively.

Table 2.1: Parameterization schemes used in WRF model.

Microphysics
Aerosol-aware Thompson Microphysics (Thompson and

Eidhammer 2014)

Longwave and
Shortwave Radiation

Rapid Radiative Transfer Model for General Circulation
Models (Iacono et al. 2008)

Surface Layer Monin-Obukhov Surface Layer Scheme (Janić 2001)

Land Surface
Interaction

Unified Noah Land Surface Model (Tewari et al. 2004)

Boundary Layer
Yonsei University Boundary Layer Scheme (Hong et al.

2006)
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Chapter 3

Case Overview

3.1 Prior to Mei-yu Landfall

Mei-yu fronts are an impactful weather phenomenon that frequently occur in Taiwan,

leading to forecasters at CWB employing a checklist to determine when to issue elevated

warnings for front-associated extreme rainfall (Table 3.1) (Wang et al. 2012). The checklist

involves multiple categories ranging from near-surface to synoptic-scale conditions, each

with their own set of objective and subjective criteria. Should any 14 of the 20 criteria

be met, CWB will begin to issue warnings for an impending Mei-yu front. Leading up to

the landfall of the 1-3 June 2017 Mei-yu front, many of these criteria were met to issue

rainfall warnings in advance (Wang et al. 2022).

Synoptically, Taiwan was situated in the right entrance region of a 300 hPa jet streak,

a common indicator of synoptic scale lift at 1200 UTC 1 June 2017 (Fig. 3.1a). An upper-

level low pressure system is vertically stacked between the 300 hPa (Fig. 3.1a) and 500

hPa (Fig. 3.1b) levels just north of the Korean peninsula in Siberia with the 850 hPa low

pressure system situated downstream of the upper-level trough in the Sea of Japan (Fig.

3.1c). To the southeast of these low-pressure systems sits the subtropical anticyclone found

at both 500 hPa and 850 hPa, a common feature for Mei-yu front formation (Zhao et al.

2004). With both the Siberian low-pressure system and subtropical high-pressure system

situated downstream of Taiwan at 850 hPa, a SLLJ (Chen et al. 2022) forms producing
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monsoonal southwesterly flow extending from the Indochinese peninsula to the central

Pacific. The Mei-yu trough that often extends from the Siberian low-pressure system and

denotes the Mei-yu front is missing in this case. Nevertheless, a horizontal wind shift at

850 hPa north of the SLLJ in central China indicates the front is just north of Taiwan

(Fig. 3.1c).

With the ensuing front just north of Taiwan, the monsoonal flow has already con-

tributed to precipitation in Taiwan. Himawari-8 True Color imagery at 0000 UTC 1 June

2017 (Fig. 3.2a) and channel 10 IR brightness temperatures at 1200 UTC 1 June 2017

(Fig. 3.3a) indicate clouds ahead of the Mei-yu rain band with strong correlation to to-

pography (Fig. 1.2). As those moist monsoonal southwesterly winds encounter the steep

topography, orographic lift forces adiabatic cooling to form condensation which rains out

over the high terrain and lee side of the CMR. Near the surface at 925 hPa (Fig. 3.4a),

southwesterly flow is seen encountering the steep terrain of southwestern Taiwan and oro-

graphically deforming into southerlies in northern Taiwan. The lack of a sharp equivalent

potential temperature gradient and wind shift near Taiwan at 1200 UTC 1 June 2017

indicates that Taiwan is still in the prefrontal environment. Mean sea level pressure is at

a minimum of 1001 hPa to the northwest of Taiwan, fulfilling another criteria of the CWB

forecasting checklist (Table 2.1). A radiosonde launched in Taipei basin at 1200 UTC 1

June 2017 shows an unstable profile with plenty of moisture in this prefrontal environment

(Fig. 3.5a). Approximately 1000 J/kg of convective available potential energy (CAPE)

and 30 J/kg of convective inhibition (CIN) indicates an environment primed for convec-

tion. The precipitable water of 67.3 mm highlights the potential for extreme rainfall. For

context, a climatology of GPS precipitable water found that the average precipitable water

vapor for Taiwan during the Mei-yu season was approximately 50 mm (Lien et al. 2022).

A slightly veering wind profile from the surface to 500 hPa indicates warm air advection

consistent with synoptic scale, prefrontal monsoonal flow.

Previous studies also have found external factors that made this event anomalously

strong. Arakane et al. (2019) noted a strengthening of both postfrontal and prefrontal
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wind speeds along with enhanced low-level moisture transport to Taiwan due to the in-

fluence of tropical cyclone Mora which formed in the Bay of Bengal on 28 May 2017 and

dissipated on 31 May 2017. The strengthening of prefrontal and postfrontal winds acted

together to strengthen the frontal system while the enhanced low-level moisture trans-

port strengthened precipitation. Tu et al. (2020) also found that the bulk of moisture

transport was found within the marine boundary layer and carried through an enhanced

marine boundary layer jet. The presence of both the MBLJ and SLLJ acted in tandem to

strengthen moisture transport and frontal trough development.

3.2 Landfall in Northern Taiwan

The Mei-yu front makes landfall on the northern coast of Taiwan at 0000 UTC 2 June

2017 (Fig. 3.6a). The associated rain band is quasi-zonal extending at least ±2◦ longitude

from Taiwan. The leading edge of the rain band has reflectivity values as high as 60 dBZ

indicative of heavy rainfall. Trailing behind the leading edge of the front is a broader

stratiform region with reflectivity values around 30 dBZ. Using True Color imagery from

Himawari-8, the entirety of the island is engulfed in clouds with additional deep clouds

south of the Mei-yu front extending upstream of the topography off the southwestern coast

parallel to the prefrontal southwest flow (Fig. 3.2b). The satellite imagery shows that the

linear cloud structure associated with the Mei-yu front extends far beyond Taiwan with an

approximate longitudinal extent of 105◦ E to 135◦ E. A sounding taken in Taipei at 0000

UTC 2 June 2017 reveals an enhanced moisture profile compared to 12 hours prior with

precipitable water of 74.2 mm coincident with enhanced low level moisture convergence

along the nearby front (Fig. 3.5b). Mid to low level (800 hPa – 700 hPa) wind speeds

have increased by approximately 15-20 knots in 12 hours, but surface winds have weakened

with the passing of the front.

It takes 6 hours for the Mei-yu front to pass Taipei and move south toward the CMR

(Fig. 3.6b,c). The leading edge of the front is near zonal on the western coastline, but

tilts southwest to northeast on the eastern coastline. This tilt lags the front on the



26

eastern coastline relative to the front on the western coastline, a trend that becomes

more prominent as time progresses from 0300 UTC to 0600 UTC. The trailing stratiform

precipitation behind the leading edge of the Mei-yu front decreases in area but persists

downstream and parallel to the tilted eastern leading edge of the eastern coastline. Despite

the front progressing further south, the stratiform cloud shield remains extended far north

beyond the coastline (Fig. 3.2c).

3.3 Central Taiwan

At 1200 UTC 2 June 2017, the Mei-yu rain band has moved farther south (Fig. 3.7a).

A more exaggerated north-south tilt in the leading edge is seen with the rain band not

reaching into the higher terrain. Unlike 6 hours prior, the trailing stratiform rainfall

reappears behind the leading edge of intense convection. Disconnected from the convection

associated with the front, there are zonal bands of isolated convection along the windward

slopes of the CMR that are indicative of rainfall produced by prefrontal flow impinging

on steep topography. Himawari-8 channel 10 shows this deep convection associated with

the rain band and trailing stratiform region and weaker leeside convection not seen in the

ground-based radar data due to blocking by the CMR(Fig. 3.3b). The 925 hPa equivalent

potential temperature and wind barbs from ERA5 (Fig. 3.4c) poorly represent frontal

placement with it being approximately one full degree north of the rain band captured

on radar. If we consider the equivalent potential temperature gradient to be accurate,

there is an approximate 20 K difference across the front, far larger than fronts observed

during TAMEX (Hor et al. 1998). Another sounding from Taipei at 1200 UTC 2 June

2017 reveals weak near-surface flow and a return to pre-landfall precipitable water (Fig.

3.4c). CAPE has diminished from 24 hours prior indicating northern Taiwan is unlikely

to receive additional intense precipitation.

By 1800 UTC 2 June 2017, the rain band on the western coast returns to quasi-zonal

orientation, but has not proceeded farther south relative to 6 hours prior (Fig. 3.7b).

Convection south of the rain band on the windward slopes continues. With the lack of a
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defined leading edge of intense convection near the terrain, there is also a lack of trailing

stratiform rainfall. The front has become stationary with convection forming upstream

in the South China Sea (SCS) and being advected downstream into the terrain. Channel

10 from Himawari-8 shows that much of the convection upstream of Taiwan has died out

with small cells forming in the South China Sea and the deepest convection forming close

to the Taiwanese west coast (Fig. 3.3c). By 0000 UTC 3 June 2017, the rain band begins

to lose linear continuity with a short rain band extending from the high terrain to the

coastline with a gap to another rain band off the coastline indicating the end of the event

and the regression of the front northward (Fig. 3.7c).

3.4 Rainfall Accumulation

The period of analysis for this study will be focused between 1200 UTC 1 June 2017 to

1200 UTC 3 June 2017, capturing prefrontal periods, landfall of the front at 0000 UTC

2 June,the quasi-stationary nature of the front over central Taiwan, and the northward

receding of the front at 0000 UTC 3 June. To account for strong orographic precipitation

not associated with the front, the 12 hours prior and after the front are included to fill out

the intensity-duration spectrum in this analysis. Within that 48-hour period, maximum

rainfall accumulation neared 1500 mm in the CMR (Fig. 3.8a). Noticeable bands of high

precipitation are collocated with the initial landfall of the front on the northern coastline

and where the front became stationary in central Taiwan. Although not associated with

these bands, there are multiple regions with 500+ mm rainfall on the windward slopes of

the SMR and CMR hinting at the prominence of orographic precipitation induced by the

monsoonal southwest flow not associated with the front.

To understand the temporal progression of the front associated rainfall, a Hovmöller

diagram of 1-hour rainfall accumulation from A to A’ in Fig. 3.7c is shown in Fig. 3.9a.

Intense rainfall begins in Taipei just before 0600 UTC 2 June 2017 and reaches its south-

ernmost extent of 23.25◦N at 1800 UTC 2 June 2017. The rain band is stationary between

23.25◦N and 23.5◦N for approximately 6 hours then recedes north at 0000 UTC 3 June
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2017. Although intense rainfall in northern Taiwan is only associated with the Mei-yu

front, there are multiple regions where rainfall is persistent throughout the entire 48-

hour period such as 23.5◦N indicative of conditions favorable for orographic precipitation

independent of the Mei-yu front.

3.5 Forecasts

This extreme Mei-yu rainfall event was a forecasting challenge for numerical weather

prediction models and human forecasters. While many of the CWB’s criteria for extreme

Mei-yu rainfall were fulfilled leading up to this event, rainfall accumulation totals were

severely under predicted. Figure 10 was provided by the CWB and shows the forecasted

rainfall accumulation from the WRF Ensemble Prediction System (WEPS) mean and

ECMWF compared to QPESUMS for 2 June 2017 using multiple model initialization

times. The WEPS system with a grid spacing of 15 km is used operationally by the

CWB and is a mesoscale ensemble centered on Taiwan with parameterizations chosen to

best model Mei-yu and typhoon events near Taiwan (Li et al. 2020). The locations of

maximum rainfall on land are similar between models and QPESUMS, but the stationary

rain band in central Taiwan is missing in all model outputs and rainfall accumulation

totals are severely underrepresented in the models. The maximum 24-hour rainfall from

all the models were approximately 250 mm whereas QPESUMS recorded just over 1000

mm. Total water is a measure of total precipitation over the entire QPESUMS domain. All

models under predicted total water by a factor of 1.5 – 2 times compared with QPESUMS,

with a more concerning notion that model runs initialized closer to analysis time predicted

less rainfall than model runs initialized 12 hours prior.

To contextualize this event, CWB uses a broader system for issuing rainfall warnings

outside of Mei-yu fronts (Table 3.2). If QPESUMS was treated as the forecasted rainfall

accumulation, the maximum potential warning between 1200 UTC 1 June 2017 and 1200

UTC 3 June 2017 are seen in Figure 3.11a. Should WEPS and ECMWF be the forecasts

that CWB followed for issuing warnings, all torrential and extremely torrential warnings



29

would be missed since these forecasts only have maximum rainfall near 250 mm. What is

more is that the criteria for extremely torrential is 500 mm in 24 hours while the maximum

accumulation for 2 June 2017 was double that near 1000 mm.

3.6 WRF Control

While the forecast models did not perform well in replicating the rainfall, the 1-km reso-

lution WRF Control run did better (Fig. 3.8b). A key feature of this event, the Mei-yu

rain band extending off the western coast, was missing in the forecast models, but was

well replicated in the WRF model. The Control run did have a few differences from QPE-

SUMS, however. The rain band was shifted north approximately a quarter of a degree

in latitude, the location of rain maximum in northern Taiwan is moved farther inland,

and the Control run lacks the heavier leeside precipitation east of the CMR. A Hovmöller

diagram of precipitation also highlights that the timing of the Mei-yu rain band is differ-

ent from QPESUMS, with the front becoming quasi-stationary briefly in central Taiwan

before progressing south, as well as missing the receding portion of this event (Fig. 3.9b).

In determining if the model replicated intensity and duration well, Figure 3.12 uses

the same methodology as Figure 2.3, but expanding to Control and Half-T for multiple

terrain elevation bins. The choice of bin sizes was meant to encapsulate low, medium,

and high terrain relative to the maximum height in observations, Control, and Half-T. In

comparing the lower terrain bin (0-500 m), the Control run performs well in replicating the

tapering intensity with increasing duration as well as a secondary maximum in intensity

near 12-hr duration (Fig. 3.12a, d). It could not capture the low duration, high intensity

rainfall found in QPESUMS. The medium terrain bin (500-2000 m) is also simulated well

in the Control with a drop off in low duration, high intensity rainfall and an increase in the

intensity of maximum duration rainfall (Fig. 3.12b, e). The high terrain bin (2000-4000

m) is not perfectly captured with QPESUMS having a maximum in intensity between

12-24 hours, while Control generally increases in intensity with increasing duration (Fig.

3.12c, f). That being said, the spread in density to higher durations is well replicated by
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the model.

For each grid point, the rain period with the highest rainfall accumulation can be

placed on a color matrix and mapped out to create a bi-variate choropleth of intensity and

duration (Fig. 3.13). Northern Taiwan exhibits scattered durations between 0-24 hours in

both QPESUMS and WRF Control, but the northeastern coastline in the Control run is

higher in duration than QPESUMS with rainfall between 24-36 hours. Higher intensities

on the northwestern coastline are similar between QPESUMS and the Control Run. In

central Taiwan, the Mei-yu rain band is associated with higher intensities and increasing

terrain height is associated with higher rainfall durations. Both characteristics are shared

between QPESUMS and WRF Control regardless of the positioning of the Mei-yu rain

band. Smaller details such as the low duration, high intensity rainfall in southern Taiwan

and low intensity rainfall on the leeside of the CMR is captured well by the model. With

how well the Control run replicates QPESUMS, this gives confidence for using this WRF

run for isolating topographic influences on precipitation at a high resolution.
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3.7 Figures and Tables
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Figure 3.1: Synoptic conditions at 1200 UTC 1 June 2017 using ERA5. (a) 300 hPa wind
speed in knots (fill), geopotential height in dam (contoured), and wind barbs. (b) 500
hPa relative vorticity (fill), geopotential height in dam (contoured), and wind barbs. (c)
850 hPa specific humidity in g/kg (fill), geopotential height in dam (contoured), and wind
barbs.
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Figure 3.2: Himawari-8 corrected True Color for (a) 0000 UTC 1 June 2017, (b) 0000
UTC 2 June 2017, and (c) 0600 UTC 2 June 2017.
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Figure 3.3: Himawari-8 channel 10 brightness temperature for (a) 1200 UTC 1 June 2017,
(b) 1200 UTC 2 June 2017, and (c) 1800 UTC 2 June 2017.



35

Figure 3.4: 925 hPa equivalent potential temperature and wind barbs with mean sea level
pressure (contoured) using ERA5 at (a) 1200 UTC 1 June 2017, (b) 0600 UTC 2 June
2017, and (c) 1200 UTC 2 June 2017.
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Figure 3.5: Skew-T diagrams and hodographs of radiosondes launched in Taipei at (a) 1200 UTC 1 June 2017, (b) 0000 UTC 2
June 2017
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Figure 3.6: Equivalent reflectivity factor in dBZ from RCWF at 1.5o elevation angle for
(a) 0000 UTC, (b) 0300 UTC, and (c) 0600 UTC 2 June 2017. The red point indicates
the location of the radar.
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Figure 3.7: As in Figure 3.6 but using RCCG as the radar for (a) 1200 UTC 2 June
2017, (b) 1800 UTC 2 June 2017, and (c) 0000 UTC 3 June 2017. The dashed line in (c)
represents the cross section in Figure 3.9.
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Figure 3.8: Rainfall accumulation from 1200 UTC 1 June 2017 to 1200 UTC 3 June 2017 for (a) QPESUMS, (b) WRF Control,
and (c) WRF Half-T.
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Figure 3.9: Hovmöller Diagram of 1-hour rainfall accumulation along the line AA’ denoted
in Fig. 3.7c using (a) QPESUMS, (b) WRF Control, and (c) WRF Half-T.
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Figure 3.10: Rainfall accumulation for 2 June 2017 for (a, d) QPESUMS, (b, c) WEPS-Mean, and (e, f) ECMWF. (b) and (e) are
forecasted rainfall accumulation with models initialized at 0000 UTC 2 June 2017. (c) and (f) are forecasted rainfall accumulation
with models initialized at 1200 UTC 1 June 2017. Wind barbs from (a, d) are from radar dual doppler synthesis at 2.5 km AGL
and wind barbs for (b, c, e, f) are for 10m AGL from their respective models. Triangles represent area of maximum rainfall. Total
water indicates the total rainfall for the QPESUMS domain.
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Figure 3.11: Highest theoretical CWB Warning issued based on rainfall accumulation between 1200 UTC 1 June 2017 and 1200
UTC 3 June 2017 for (a) QPESUMS, (b) WRF Control, and (c) WRF Half-T.
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Figure 3.12: Intensity and duration scatterplots for all (a, b, c) QPESUMS, (d, e, f) WRF
Control, and (g, h, i) WRF Half-T rain periods over land (a, d, g) between 0 – 500 m
(0-250 m), (b, e, h) between 500 – 2000 m (250 – 1000 m), and between 2000 – 4000 m
(1000 – 2000 m) terrain height for WRF Control (WRF Half-T) using contiguous duration
with 1-hour gap allowance in rainfall. Grey contours represent lines of constant rainfall
accumulation in mm.
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Figure 3.13: Bi-variate choropleth of contiguous duration and average rain rate of the highest rainfall accumulating rain period for
each grid point for (a) QPESUMS, (b) WRF Control, and (c) WRF Half-T. (d) is the reference color matrix.
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Table 3.1: CWB forecasting checklist for issuing extreme rainfall warnings for Mei-yu
fronts (Wang et al. 2012).

(a) Surface Mei-yu front

1) Inside 20◦-28◦N, 118◦-124◦E

2) Taipei (25.03◦N, 121.63◦E)
within 200 km south and 100
km north of the front

3) Kaohsiung (22.58◦N, 120.42◦E)
within 200 km south of the
front

(b) Humidity

4) 850 hPa dewpoint temperature
(Td) ≥ 15◦C

5) 850 hPa equivalent potential
temperature (θe) axis point to-
ward Taiwan

6) 700 hPa dewpoint depression
(T − Td) ≤ 3◦C

(c) LLJ (inside 18◦-26◦N, 115◦-125◦E)

7) Surface southwesterly flow of
10-20 kt

8) 850 hPa southwesterly flow >
25 kt

9) 700 hPa southwesterly flow >
30 kt

10) 850 hPa southerly-
southwesterly flow ≥ 10
kt over northern SCS (north of
15◦N)

(d) Temperature

11) 850-700 hPa cold tongue north
of the wind-shift line

12) Taiwan in diffluent area of the
1000-500 hPa thickness field

(e) Wind shift line (inside 22◦-28◦N,
114◦-127◦E)

13) 850-700 hPa wind shift line

(f) Subsynoptic system (in southeast-
ern China or northern SCS, east of
114◦E

14) Surface or 850 hPa mesolow

15) 700-50 short-wave trough

(g) Pressure (over the proximity of Tai-
wan)

16) Taiwan in low pressure zone

17) Surface pressure < 1005 hPa

(h) Upper-level wind

18) 300-200 hPa diffluent flow with
angle > 45◦

19) Taiwan under 300-200 hPa
right quadrant entrance to the
jet streak

(i) Stability

20) K index > 35
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Table 3.2: CWB severe weather advisory criteria.

1-Hour
Accumulation

(mm)

3-Hour
Accumulation

(mm)

24-hour
Accumulation

(mm)

Heavy Rain 40 80

Extremely Heavy Rain 100 200

Torrential Rain 200 350

Extremely Torrential Rain 500
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Chapter 4

Results

4.1 WRF Half-T

4.1.1 Rainfall Accumulation

The decrease in terrain height in the WRF Half-T run led to a broad decrease in precipita-

tion in high terrain and northern Taiwan (Fig. 3.8). The rainfall maximum accumulation

in the Control run was 1581 mm whereas the maximum in the Half-T run was 788 mm,

both relative maxima found above the 2 km terrain height contour. Median rainfall accu-

mulation over Taiwan was 232 mm for the Control run while the median for Half-T was

183 mm. Much of southern and eastern Taiwan experience similar rainfall totals in both

the Control and Half-T runs for elevations below 1 km. A local maximum in rainfall accu-

mulation is found in northwestern Taiwan in the Control run that is missing in the Half-T

run. The Mei-yu rain band off the western coast has also shifted north in the Half-T run

with a leeside band of precipitation that is missing in the Control run. Despite differences

in rainfall accumulation, timing of the Mei-yu rain band in the Hovmöller diagrams is

similar with both model runs making landfall at approximately 0000 UTC 2 June 2017,

progressing south, and becoming quasi-stationary near 24.25◦N, then progressing south

again (Fig. 3.9b, c). The Hovmöller plots also highlight that in central and southern

Taiwan, the reduction in terrain height reduces the amount of persistent rainfall found
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between 23.25◦N and 23.75◦N regardless of Mei-yu association.

It should be noted that while the reduction in terrain height has dramatically reduced

maximum and median rainfall accumulation for this event, it still qualifies as extremely

torrential based on the CWB rainfall criteria (Fig. 3.11b, c). The reduction in terrain

height shifts the extremely torrential rain warning to the northwestern edge of the SMR.

This is different than the Control run where both the CMR and a greater area of the SMR

qualify for extremely torrential rainfall. Most regions that would have received a warning

in the Control run would have received a warning in the Half-T run. With the apparent

shift in rainfall warnings, there would be an accompanying shift in rainfall intensity and

duration.

4.1.2 Intensity and Duration

In comparing WRF Control and Half-T through the intensity and duration framework,

elevation bins were scaled to represent the same areas rather than the same elevations

(Fig. 3.12d-i). For example, the low elevation bin for the Control run represents 0-500 m

terrain height whereas the low elevation bin for the Half-T run represents 0-250 m terrain

height. The reduction in terrain height had little effect on low duration rainfall in the

low elevation terrain bin but decreased the maximum attainable rainfall duration from 48

hours to 38 hours (Fig. 3.12d, g). Within the medium terrain height bin, few Half-T rain

periods are able to attain a maximum rainfall duration of 48 hours (Fig. 3.12h). The few

rain periods that do are all low intensity with average rain rate below 10 mm/hr, whereas

the Control run produces maximum rain duration rain periods with average rain rates

upwards of 20 mm/hr (Fig. 3.12e). The Control run also experiences a slight shift in

density to higher rainfall duration that is not seen in the Half-T run. Within the highest

elevation bin, the distributions of rainfall intensity and duration are most dissimilar (Fig.

3.12f, i). The Control run continues the shift in density toward high duration rainfall as

well as an increase in rainfall intensity at maximum rainfall duration. The Half-T run

continues to have low intensity at high duration and higher intensity at low duration. The
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Half-T run also has a slight increase in density toward higher duration rainfall, indicating

that regardless of model run, areas of increased terrain height are likely to experience

greater rainfall duration. Rainfall intensity does not seem to increase with terrain height

except in the case of maximum duration rain periods in the Control run.

When mapped using the bi-variate choropleth (Fig. 3.13b, c), spatial trends emerge

to bolster the results of the intensity and duration scatterplots. At high altitudes found

within the CMR, rainfall intensity decreases in the Half-T run. Within the Control run,

much of the western sides of the CMR and SMR are within the 36-48-hour rainfall duration

bin, but the Half-T run drops to durations between 12-36 hours. The most striking drop in

intensity and duration can be found where the Mei-yu rain band becomes quasi-stationary

in the Control run. Within central Taiwan (23.5◦-24.25◦N), some of the most intense and

highest duration rainfall is found within the Control run, but a stark drop off in intensity

from the western coastline to the CMR and a drop in rainfall duration above the 500 m

terrain height contour in the Half-T run highlights a region of interest for further analysis.

Another region of interest for investigating orographic controls on rainfall intensity and

duration is northern Taiwan (>24.75◦N). Whereas the Control run has a wide array of low

and high durations and intensities in northern Taiwan, the Half-T run experiences overall

lower duration with similar intensities. Understanding the link between reduced terrain

and reductions in rainfall intensity and duration in these regions, Northern and Central

Taiwan, will be the focus of the next two subsections.

4.2 Northern Taiwan

4.2.1 Barrier Jet Formation

Prior work by Tu et al. (2022) highlight the sensitivity of the 1-3 June 2017 Mei-Yu front

propagation to slight modifications in topography with the removal of the Yang-Ming

mountains (Fig. 4.1). While their study finds that the removal of the mountains increases

the propagation speed of the front, they also placed the barrier jet as a key contributor to
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lifting along the front and producing heavy rainfall along it. This barrier jet in their study

was replicated well at 900 hPa within WRF in both the Control and Half-T run (Fig. 4.2).

At 1800 UTC 1 June 2017, the Control run exhibits 900 hPa wind speeds above 50 knots

along the northwestern coastline whereas the Half-T run is slightly weaker between 40-45

knots (Fig. 4.2a, b). Evidence of these barrier jets originating from upstream orographic

blocking is found in southern Taiwan with southwesterly flow slowing down on approach

toward the CMR. The degree of slow down is larger for the Control run with flow off the

coast between 30-35 knots and dropping to 10 knots near the CMR in the Control run

while the Half-T run drops to 20 knots. A common way of determining orographic blocking

is through high perturbation heights upstream of orography (Pierrehumbert 1984). Figure

4.3 shows 900 hPa perturbation heights for both the Control and Half-T run at 1800 UTC

1 June 2017. Both model runs have a high perturbation height collocated with the slow

down of flow with the Control run having a 5-10 m greater perturbation, giving confidence

that while orographic blocking is evident in both runs, the strength of the blocking is

stronger in the Control run.

A tool often used to diagnose the degree of orographic blocking is the Froude number

defined as:

Fr =
U

Nh
(4.1)

Where U is the wind speed orthogonal to a mountain, N is the Brunt-Väisälä frequency,

and h is the mountain height. Froude number values larger than 1 are unblocked with

inertial forces overtaking the stability of the atmosphere and allowing for orographic lifting

of a parcel. Should the Froude number be less than 1, a parcel’s inertia is not able to

overcome the atmosphere’s stability, pushing orographic lift upstream of the orography

with a portion of the flow orographically deforming (Pierrehumbert 1984; Kirshbaum et

al. 2018; Chen et al. 2008; Chen and Lin 2005).

An orographic deformation radius can thus be defined as:

Ld =
Nh

f
(4.2)
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Where N is the Brunt-Väisälä frequency, h is the mountain height, and f is the Coriolis

parameter (Pierrehumbert and Wyman 1985). In the presence of orographic blocking due

to a mesoscale mountain range, the orographic deformation radius is the distance upstream

of the orography whereby orographic blocking extends. For an idealized mountain range

with length Ly, the orographic deformation radius becomes Ly if the mountain range length

is far less than that of the orographic deformation radius. These two tools in tandem, the

Froude number and orographic deformation radius, can determine the degree and extent

of orographic blocking. For example, for a Froude number less than 4/3, deceleration is

found within the orographic deformation radius and for a Froude number less than 2/3,

zones of near stagnant air will also exist within the orographic deformation radius. Lin

(1993) provides simple measurements for estimating the orographic deformation radius

with length of the CMR being approximately 300 km and the average height being 2

km. Assuming the Brunt-Väisälä frequency to be 0.1 s−1 and the Coriolis parameter is

approximately 6×10−5 s−1, we find that the orographic deformation radius for Taiwan is

approximately 333 km, slightly higher than the length of the CMR. With halved terrain

height, the Half-T run will have an orographic deformation of 166.5 km, significantly less

than the length of the CMR. For this reason alone, regardless of flow speed, differences in

the orographic blocking extent should differ between model runs.

The extent and depth of the orographic blocking is analyzed through the cross sections

as shown in Figure 4.2. Cross section BB’ points from far off coast and ends at the peak

of the Jade Mountain. Cross section CC’ runs parallel to BB’ but is shifted north ending

at the northernmost peak of the CMR to capture downstream effects of the orographic

blocking. A modification to the Froude number is such that it takes on a height relative

form:

Fr(z) =
U(z)

N(z)[h− z]
(4.3)

This modification better visualizes the horizontal and vertical extent of orographic block-

ing. Cross sections BB’ and CC’ (Figs. 4.4 and 4.5) contain a cross section-relative

tangential wind speed that points toward the orography, a cross section-relative orthogo-
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nal wind speed, and a height-relative Froude number using the peak terrain height of the

cross section and the tangential wind speed.

For both BB’ and CC’ in the Control run, orographic blocking runs nearly the full

extent of the cross sections with Froude number values under 1 below 2 km height (Fig.

4.4a, b). The lowest Froude numbers in each cross section are collocated with stagnant

zones with near zero tangential wind flow situated near the terrain (Fig. 4.4c, d). Tangen-

tial wind speeds below the 2 km blocking height slow down when crossing the coastline for

both BB’ and CC’, but for BB’ this slow down is greater in magnitude. A partial reason

why is found in the orthogonal wind speeds and vertical velocity (Fig. 4.4e, f). While

both BB’ and CC’ have predominantly southeastward orthogonal flow off the coast, CC’

is found to have northwestward orthogonal flow on land and near topography, indicating

that flow has turned counterclockwise relative to BB’ on land. Tangential flow along BB’

is being orographically blocked and transported to northern Taiwan as evidenced by the

southerly flow found in CC’ in the Control run.

Within the Half-T run, orographic blocking is reduced along BB’ and CC’ (Fig. 4.5a,

b). The only regions with Froude number less than 1 along BB’ are found within 10 km

of the topography. There is a corresponding slow down of tangential flow on land in BB’

similar to the Control run with near stagnant zones collocated with Froude numbers less

than 1; overall, however, the tangential winds are stronger below 2 km height in the Half-T

run compared to the Control run (Fig. 4.5c). Orthogonal winds along BB’ are similar in

strength to those found in the Control run (Fig. 4.5e). Updrafts indicated by positive

vertical velocity are found closer to the peak of the Jade Mountain. The result of this

weaker orographic blocking in the Half-T run is seen downstream along CC’ where the

positive orthogonal winds near the terrain are significantly weaker relative to CC’ in the

Control run (Fig. 4.5f). Therefore, as southwest flow in both model runs encounter the

Jade Mountain, the weaker orographic blocking in the Half-T run leads to less diversion

of flow from southern Taiwan to northern Taiwan, reducing the strength of the barrier jet.
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4.2.2 Effects of Barrier Jet on Rainfall

The effect of the barrier jet on the Mei-yu front and rainfall associated with it is most

prominent upon landfall of the Mei-yu front in this case. To track the Mei-yu front over

both ocean and land, a modified form of the Parfitt et al. (2017) frontal diagnostic will

be used at 900 hPa:

F =
F ∗

f |∇T |0
(4.4)

with

F ∗ = ζp|∇(θe)| (4.5)

|∇T |0 =
0.45K

100km
(4.6)

The modification made is changing the thermal variable from temperature in F ∗ to equiv-

alent potential temperature as the Mei-yu front has a less defined thermal gradient com-

pared to midlatitude fronts. Should the frontal diagnostic go above a value of 1, there is

confidence of there being a Mei-yu front present with increasing confidence as the value in-

creases over 1. There are numerous methods of tracking the Mei-yu front (Ninomiya 1984;

Cho and Chen 1995), most of which are modified forms of frontogenesis. Unfortunately,

since these frontogenetic equations often rely on deformation of flow along the front, oro-

graphic deformation can be misconstrued as a front as well. Therefore, a modified form

of the Parfitt et al. (2017) method works best for this study.

The Mei-yu front makes landfall at approximately 1900 UTC 1 June 2017 in both

model runs (Fig. 4.6). The front is aligned on top of the northwest coastline and extends

west into the Taiwan Strait in both model runs with heavy rainfall in the next hour

spatially correlated with the location of the front. The eastern edge of the Mei-yu front is

coincident with a mesolow on the northernmost coastlines near Yangmingshan National

Park. Wind barbs at 900 hPa reveal that at this time, the barrier jet is approximately

5-10 knots stronger in the Control run pointing toward the northeast. Downstream of the

barrier jet, lighter rainfall is present over the next few hours.

Two hours later at 2100 UTC 1 June 2017, the Mei-yu front on land remains at the
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same location along the northwestern coastline in the Control run whereas the Half-T front

has begun to progress south (Fig. 4.7). Both model runs have the fronts off the western

coast progressing south, however. Despite the Half-T front progressing south on land,

there is a small portion that is still present to the north of the Yangmingshan National

Park, consistent with the findings of Tu et al. (2022). Heavy rainfall remains linked with

the locations of the fronts as well as lighter rainfall downstream of the barrier jets. The

barrier jet in the Control run has not changed in strength or size relative to two hours

prior, but the barrier jet in the Half-T run has diminished in both respects in proximity

to the Mei-yu front.

At 2300 UTC 1 June 2017, the Control Mei-yu front is still anchored to the north-

western coastline on land whereas the Half-T front has progressed even farther south (Fig.

4.8). Similar to two hours prior, the fronts over the ocean continue to progress south.

Unlike prior hours, the location of heavy rainfall in the Control run is only collocated

with the off-coast front. On land, the heavy rainfall is not collocated with the front, but

forms downstream of the off-coast front. In the Half-T run, the heavy rainfall is linked to

both the on-land and off-coast fronts, with the mesolow situated on the eastern edge of

the front intensifying postfrontal northeasterlies enough to reorient the front on land to

west-northwest to east-southeast. The Control barrier jet has not diminished in strength,

but the Half-T jet has regained some strength similar to 4 hours prior, producing heavier

rainfall behind the Mei-yu front. The lighter precipitation downstream of the barrier jets

has remained the same for the Control run, but the Half-T run has the downstream pre-

cipitation shifted south with the progression of the Mei-yu front. Precipitation along the

northern most coastlines have subsided for the Half-T run.

For most of the Mei-yu front’s period in northern Taiwan, the heaviest rainfall remains

linked with the location of the Mei-yu front. Despite modifying the terrain height, the

rainfall intensity over this 4-hour period has not shown much difference. Therefore, the

decrease in rainfall duration in the Half-T run can be attributed to the Mei-yu front’s

faster progression on land. Although the differences in barrier jet strength may be the
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cause of the varying Mei-yu front propagation speeds, there is also a possibility the SMR

was the cause. There is a wealth of literature on the effects of topography upstream of

midlatitude fronts slowing their propagation (Blumen 1992; Dickinson and Knight 1999;

Egger 1992). The first obstacle the Mei-yu fronts encounter is the SMR and with the

reduced terrain height in the Half-T run, it is possible the speed up in frontal progression

is due to that rather than the barrier jet.

4.2.3 Northern Taiwan Trajectory Analysis

To determine if the barrier jet contributes to frontal progression, a RIP trajectory analysis

was performed on the Control and Half-T runs. Parcels were released from three different

locations upstream of the barrier jet with each release group aligned along the same

latitude but with differing proximities to the CMR (Fig. 4.9, 4.10, 4.11). Within each

parcel release group, parcels were released every hour starting at model forecast hour 0

(1200 UTC 1 June 2017) and ending at model forecast 12 (0000 UTC 2 June 2017) each

terminating at 0200 UTC 2 June 2017. While the barrier jet is predominantly found at

the 900 hPa level, this does not account for parcels lifting or descending to that level on

route to the barrier jet. To try and account for these parcels, the trajectories were also

released at 875 hPa and 925 hPa. In total, each model run will have 117 parcels.

If the barrier jet plays a role in slowing down the Mei-yu front, parcels originating

from the third release group should enter northern Taiwan more in the Control run than

in the Half-T run because that release location is closest to where upstream orographic

deformation should form. Release group 2 should have less of a difference between models

and release group 1 should have even less of a difference given their increasing distance to

the CMR. For the purposes of overall impact in northern Taiwan, northern Taiwan will be

denoted as the region bound between the northern coastline and 24.75◦N (gray shading

in Fig. 4.12).

Control parcels in release group 1 overwhelmingly enter northern Taiwan (Fig. 4.12a,

Table 4.1) whereas approximately half the number of parcels in the Half-T run make it
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to northern Taiwan (Figure 12b, Table 4.2). Instead, parcels in the Half-T run opt to

summit the SMR and CMR rather than orographically deform. The northward deflection

found in the Control run is strong enough that some parcels do not register as entering

northern Taiwan but surpassing the northern coastline. These trends continue into release

group 2 (Fig. 4.12c, d) with a larger portion of parcels entering northern Taiwan in the

Control run in comparison to the Half-T run. That being said, the number of parcels

entering northern Taiwan, regardless of model run, has decreased relative to release group

1 (Tables 4.1, 4.2). The degree of decrease is different however with the Control run

dropping from 25 parcels to 21 parcels whereas the Half-T run drops from 12 parcels to

3 parcels indicative of a decrease in orographic blocking in proximity to the mountain

ranges. Release group 3 sees another drop off in the number of parcels entering northern

Taiwan within both model runs (Fig. 4.12e, f). While the Control run has more parcels

summiting the CMR in release group 3 than release group 1, the number of parcels that

enters northern Taiwan is still larger than that of release group 1 in the Half-T run (Tables

4.1, 4.2). As each release group moves closer to the topography, there is a reduction in

parcels reaching northern Taiwan indicating that greater deflection of flow is found farther

upstream of topography. In the Control run, parcels originating from the 900 hPa and

925 hPa levels are most likely to enter northern Taiwan whereas the Half-T run mostly

has parcels originating from the 925 hPa level entering northern Taiwan.

The reduction in terrain height found in the Half-T run resulted in a weaker barrier jet

manifesting from weaker upstream orographic deformation in comparison to the Control

run. This modification to the barrier jet increased the southern propagation speed of

the Mei-yu front and with it, a decrease in duration of heavy rainfall collocated with

front. While the orography was indirectly modifying the front through the barrier jet, the

orography did not directly modify the rainfall. As the front progresses south into central

Taiwan, these expectations aren’t expected to hold as the front comes in direct contact

with the orography.
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4.3 Central Taiwan

4.3.1 Mei-yu Frontal Positioning in Central Taiwan

Although the highest rainfall totals of the June 2017 Mei-yu front event occur in central

Taiwan, there are no studies that have explored this front as it progresses south past

Taipei Basin. Furthermore, Mei-yu front progression in central Taiwan outside of this

event is seldom studied with previous efforts only focusing off the western coast (Wang et

al. 2012). One of the main reasons for this lack of research is in the difficulty of tracking

the front on land and near topography.

The conventional dichotomy of prefrontal southwesterlies and postfrontal northeast-

erlies found in a Mei-yu front breaks down when the front is oriented perpendicular to

the CMR. 900 hPa winds averaged over a 6-hour period reveal that while the front is in

central Taiwan, typical postfrontal northeasterlies are missing from central to northern

Taiwan for both model runs (Fig. 4.13). In both model runs a leeside cyclone forms to the

northeast of Taiwan blocking possible postfrontal northeasterly winds from reaching the

Mei-yu front situated on the western slopes of the CMR. This cyclone forms as a result of

southwest winds curving around the southern end of the CMR, as well as leeside troughing

of southwest winds. Even if the cyclone was not present, postfrontal northeasterlies would

likely be orographically blocked by the SMR on approach to central Taiwan. This poten-

tial blocking of postfrontal winds would be due to their weaker magnitude compared to

prefrontal southwesterlies which were found to be blocked in northern Taiwan (Fig. 4.4b,

4.5b). As such, identifying the Mei-yu front over land is a challenge, especially in west

central Taiwan.

Figures 4.14 and 4.15 step through 3 hours for both model runs zooming in on west

central Taiwan showing wind direction, the modified Parfitt et al. (2017) frontal diagnostic,

and wind barbs at 950 hPa. Differences in timing between model runs captures similar

starting positions of the fronts identified off the west coast. The frontal diagnostic shows

a front extending over land at 950 hPa, more so than at 900 hPa (not shown).

At the start of analysis for each model run, there is a clear Mei-yu front extending
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off the western coast of central Taiwan between 23.75◦N and 24◦N (Figure 4.14a, 4.15a).

While relatively similar in positioning over the Taiwan Strait, frontal locations are dis-

similar on land between model runs. Prefrontal winds are similar between model runs

with southwesterly winds blowing between 30-35 knots. The postfrontal sectors are dras-

tically different, however. Far to the north of the fronts, there are north-northeasterly

winds. Closer to the Mei-yu front, they turn counterclockwise, becoming westerlies. The

degree of turning is sharper for the Control run in comparison to the Half-T run, which is

hypothesized to be the result of frontal deformation.

Thereafter in the Half-T run, postfrontal westerlies run parallel to the Mei-yu front,

identified by the frontal diagnostic between 24◦N and 24.5◦N, but is increasingly difficult

to pinpoint exactly where the front is located on land. The Control run has a more

complex postfrontal sector on land where the postfrontal westerlies encounter the steeper

SMR and appear to orographically deform, splitting into south-southwesterly winds to

the north and northwesterly winds to the south. These northwest winds collide with

the prefrontal southwesterly winds to create a front on land that is not only more easily

identifiable than the Half-T run, but is pushed south more than the Half-T run closer to

23.75◦N.

An hour later,postfrontal northwesterlies begin to emerge in the Half-T run (Fig.

4.15b), with a more recognizable front on land that is located farther south between

23.75◦N and 24◦N. This front is mostly linear in orientation which contrasts the Control

front (Fig. 4.15b) which has become distorted on land. A similar postfrontal pattern

exists from an hour prior for the Control run. Since the suspected orographic deformation

is only found close to the topography based on wind direction shifts, however, the front

is only pushed south where we find the postfrontal northwesterlies. This effect creates a

deviated pattern in the Control front where it is less identifiable and pushed north at the

coastline, but more identifiable and pushed south in proximity to the topography. Despite

the emergence of postfrontal northwesterlies in the Half-T run, the Control front on land

and near the terrain is still farther south by comparison.
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One more hour later and the Control front near the terrain has not moved much on

land despite the front over the ocean progressing south (Fig. 4.14c). The postfrontal

sector of the Half-T run has become almost entirely northwesterly, maintaining a linearly

oriented front on land which has progressed more south than the Control front in the past

hour (Fig. 4.15c). Although the postfrontal sector is likely the cause of frontal progression

speed, there is likely another contribution from the prefrontal sector with some evidence

of stronger orographic deformation in the Control run leading to more southerly winds

near the terrain compared to the more westerly winds in the Half-T run. This observation

supports a slower southern progression of the Control front on land in comparison to the

Half-T front. Although the strength of the postfrontal northwesterlies that form from

suspected orographic deformation in the Control run are comparable to that of the Half-

T run’s postfrontal northwesterlies, the area that the postfrontal northwesterlies cover is

different with the Control run only exhibiting northwesterlies close to the topography and

the Half-T run having northwesterlies extending far beyond the coastline. The existence

of the postfrontal northwesterlies is likely important for maintaining the front and their

strength and spatial extent affects frontal progression south.

Many of these trends at 950 hPa are observed at other levels. By looking at the 925

hPa level for the Control run, there is a shift from west-southwest winds to southwest

winds in the prefrontal sector on land indicative of orographic deformation (Fig. 4.16a).

This feature is not as prominent in the Half-T run at the same level (Fig. 4.17a). Similarly,

the only postfrontal northwesterlies that collide with the prefrontal flow in the Control

run are those formed through what appears to be orographic deformation to the north of

the front. The Half-T run exhibits postfrontal northwesterlies originating from cyclonic

rotation. Closer to the surface at 975 hPa, flow is less westerly in direction in the Control

postfrontal sector and both model runs exhibit more northerly postfrontal sectors with a

more contiguous fronts as opposed to higher levels (Fig. 4.16b, 4.17b).
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4.3.2 Effects of Frontal Positioning on Rainfall

Extreme rainfall in central Taiwan is predominantly focused on higher terrain (Fig. 3.8)

and as such will be the focus of this section in the context of frontal placement. Figures

4.18 and 4.19 show rainfall accumulation over the next hour for the times discussed in

section 4.3.1. At the start of analysis, a trait found in northern Taiwan, collocation of

extreme rainfall and Mei-yu front, is captured by the Control run (Fig. 4.18a). The link

is separated in central Taiwan, however, with rainfall exceeding 60 mm/hr directly east

of the Mei-yu front in the CMR. The Half-T run does not have heavy rainfall in the high

terrain, but rather upstream of the topography and south of the Mei-yu front (Fig. 4.19a).

The rainfall may not be collocated with the front possibly owing to how difficult it is to

track the front or due to rapid southern propagation of the front.

An hour later and the Half-T run now has heavy rainfall collocated with the Mei-yu

front, though the rainfall is still shifted upstream of the topography (Fig. 4.19b). The

Control run has extreme rainfall in the CMR to the east of the Mei-yu front at 23.8◦N,

but curiously, the Control front is not linear and is not contained at a single latitude (Fig.

4.18b). It appears the location of the heavier rainfall is determined by the location of the

front in direct contact with the topography. This assertion is only consistent for the most

extreme rainfall as lighter rainfall is spread out in location regardless of frontal placement.

In the last hour, similar characteristics remain. In the Control run, despite the front

appearing to be located along 23.6◦N off the western coast, closer to the terrain, the front

is located just north of 23.8◦N (Fig. 4.18c). In turn, not only is extreme rainfall in the

next hour aligned with 23.8◦N, but little to no rainfall is observed along 23.6◦N, further

supporting that the placement of the front off the coast is not directly controlling rainfall

location and intensity in the terrain. In the Half-T run, the same observation can be made,

but because the front is near zonally oriented, rainfall aligns along a single latitude (Fig.

4.19c).

At each hour, a common thread remains with extreme rainfall being found to the east

of the Mei-yu front’s location in direct contact with the CMR. As such, the implications



61

this has on intensity and duration of rainfall are similar to findings in northern Taiwan.

The intensity of rainfall is linked with steep topography and frontal location. Although

the strength of the fronts may be similar between the model runs, the steeper topography

in the Control run will lead to greater orographic lift than the Half-T run. Duration

is tied to the propagation speed of the Mei-yu front. In the Half-T run, the strong

postfrontal northwesterlies with a more westerly prefrontal sector acts to increase frontal

propagation speed, thereby decreasing rainfall duration in a given location. The Control

run experiences the opposite with the weak postfrontal northwesterlies formed through

suspected orographic deformation colliding with a more southerly prefrontal sector, slowing

frontal propagation and increasing rainfall duration at a given location.

4.3.3 Verification of Orographic Deformation

To validate assumptions of orographic deformation in the prefrontal and postfrontal sector,

cross sections are taken from off the coast toward the CMR on both sides of the Mei-yu

front (Fig. 4.20, 4.21). The utility of using the cross sections is that orographic blocking

can occur at different levels, at different distances upstream of the topography, and these

levels and distances may differ depending on what side of the front is being analyzed. The

cross-front difference in orographic blocking is most apparent due to the different maximum

terrain heights of the SMR in the postfrontal sector and the CMR in the prefrontal sector.

In viewing the zonal wind of the prefrontal sector, both model runs exhibits similar wind

speeds under 0.5 km ASL, but above that level, the Half-T run is approximately 10 ms−1

faster than the control run (Fig. 4.20c, d). A consequence of this difference, along with

the differences in terrain height, is that the blocking height, as viewed through the zonal,

altitude relative Froude number, is significantly higher in the prefrontal sector of the

Control run relative to the Half-T run (Fig. 4.20a, b). For much of the Control prefrontal

sector, the blocking height is near 2.5 km whereas much of the Half-T sector is only blocked

up to 0.5 km with regions close to the terrain being unblocked.

Zonal wind speeds in the prefrontal and postfrontal sectors are similar above 1 km ASL,
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but beneath that level, both model runs have postfrontal easterly flow in the west turning

into westerly flow in the east indicative of the counterclockwise turning (Fig. 4.21c, d).

The wind speeds in this level are not all that dissimilar between the Half-T and Control

run; therefore, the differences in Froude number are likely attributed to the differences in

terrain height. In comparing the blocking heights in the prefrontal and postfrontal sectors,

the Control run has a higher blocking height in the prefrontal sector whereas the Half-T

run has a higher blocking height in the postfrontal sector. Therefore, a reason why the

Control front has a slower propagation speed is because of stronger conversion of westerly

flow to northerly flow via orographic blocking in the prefrontal sector.

When viewing the Mei-yu front along a meridian, differences in the prefrontal and

postfrontal sectors are more striking (Fig. 4.22). The gradient in zonal and meridional

wind speeds found near 23.85◦N indicates the approximate location of the Mei-yu front.

Differences in these gradients among model runs also manifests in how sharp of a cross-

front isentropic gradient exists given the Control gradient is much sharper than the Half-T

gradient at low levels. In the prefrontal sectors, zonal winds are approximately 10 ms−1

weaker in the Control run compared to the Half-T run throughout all levels, consistent

with stronger orographic blocking (Fig. 4.22a, b). For comparison, the postfrontal sectors

only differ by 5 ms−1 in comparison, but the Control run has near stagnant flow near

the surface that is absent the Half-T run. The steeper terrain in the Control run leads

to more complex meridional winds along this cross section relative to the Half-T run

(Fig. 4.22c, d). The wind speeds of the prefrontal southerlies in direct contact with

the front are relatively similar, however. Winds in the Control run’s postfrontal sector

clearly illuminate orographic deformation near 24.15◦N (Fig. 4.22c). This relationship

can be assumed because of northerlies to the south, southerlies in the north, and positive

vertical velocity found at the gradient between the two. In contrast, the entirety of the

Half-T postfrontal sector is weakly northerly (Fig. 4.22d). Interestingly, there is a strong

postfrontal northerly flow relative to the other northerlies in the postfrontal sectors just

north of the Control front that seems to be not connected to northerlies that form from
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orographic deformation.

A limitation of the cross sections are the limited spatial context they give. The post-

frontal sector of the Control run alone is complex with winds flowing in multiple directions

prior to converging along the front. A component that is left out when using cross sec-

tions outside of the front is propagation of parcels along the Mei-yu front. Some of the

strongest frontal convergence is found off the western coast with westerly components on

both sides of the front. It is possible that propagation of the Mei-yu front is controlled by

westerly winds just at the frontal interface in proximity to the CMR. To determine if this

is possible and if orographic deformation is found outside of the cross sections, a similar

RIP trajectory analysis to that in northern Taiwan (Section 4.2.3) was performed. For

this analysis, parcels were released along the 120.75◦E meridian at the frontal interface

in both the prefrontal and postfrontal sectors as represented by the black dots in Figure

4.22. The choice of 120.75◦E was made due to it being the closest to the topography with

an identifiable front in both model runs. Release heights varied from 400 – 800 m ASL.

To capture the origin of parcels, a 6-hour backwards trajectory was run, and to determine

if the origin of the parcels has an impact on lifting potential, a 4-hour forward trajectory

was also run with the backward and forward trajectories stitched together at 120.75◦N.

Starting with the lifting of parcels, it is difficult to discern differences in parcels released

in the Control run compared to those released in the Half-T run (Fig. 4.23b, 4.24b). On

approach to the release point within the backwards trajectories, parcels do not originate

from higher levels nor do they encounter significant lifting or descent. After passing the

release point, parcels lift via orographic lift along the CMR resulting in a spread in ending

heights between 2-14 km ASL. The largest difference between model runs is the longitude

at which they encounter the most lift with the Control run having most parcels lifting

from the release point to 121.25◦N whereas the Half-T run has most parcels lifting from

the release point to 121◦N. Another distinction is the difference in maximum lift achieved

relative to release height. The Control run has the most lift achieved by parcels released

below 800 m while the Half-T run has all parcels released at 800 m reaching altitudes above
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7.5 km. Beyond those differences, trajectories in each model run have similar packets of

origin heights and ending heights.

When viewing the horizontal paths that parcels take in the backwards trajectories,

a few differences stand out (Fig. 4.23a, 4.24a). Parcels released in the prefrontal sector

are inferred as originating southwest of the release point, far upstream. This pattern is

shared among both model runs indicating that the prefrontal sectors are relatively the

same between model runs. Parcels that are not clearly originating in the prefrontal sector,

however, have different paths between the model runs. The parcels in the Control run

originating to the northwest of the release point with predominantly eastward propagation

(Fig. 11a) sharply clockwise turn occurs before reaching the release point, providing

evidence of orographic deformation. Once at the release point, parcels become westerly

along the front, lift above the CMR, and advect eastward. Somewhat like the Control run,

a majority of these parcels in the Half-T run originate to the west northwest of the release

point (Fig. 4.24a), though notably, significantly farther west than the Control run. The

parcels also turn clockwise into the release point before becoming westerly, rising above

the CMR, and propagating east.

Seeing as parcels not originating in the prefrontal sector turn clockwise to reach the

release point regardless of model run, it can be difficult to determine if the turning is due

to orographic deformation. Although previously it was determined that the postfrontal

sector in the Control run is more suitable for orographic blocking as seen through the

Froude number, the Half-T run was still blocked below 0.75 km when westerly wind was

present (Fig. 4.21b). Therefore, modification of the Froude number to a Lagrangian form

is developed to determine if a parcel experiences orographic blocking:

Fr(x, y, z, t) =
Ū(x, y, z, t)

N(x, y, z, t)[Hmax(t)− z(t)]
(4.7)

At any given time and location, a parcel will have a characteristic Brunt–Väisälä frequency,

height, wind speed, and wind direction. Using a cross section aligned with the wind

direction, a maximum terrain height along the cross section can be used for the Froude
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number calculations. These cross sections are made at every time step of a parcel’s path

prior to summiting the CMR to create a Lagrangian Froude number (Fig. 4.25).

The result of this framework is shown in Figure 4.26 where regardless of origin point,

the Control parcels are almost always blocked as indicated by Froude numbers less than 1

whereas the Half-T parcels are almost always unblocked. This result indicates that in the

Half-T run, any turning is not due to orographic blocking. The Control parcels are almost

all blocked, therefore supporting that orographic deformation contributes to turning. For

these reasons, it is likely that parcels originating north of the release point in the Control

run are originating in the postfrontal sector. Non-prefrontal parcels in the Half-T run can

not definitively be originating in the postfrontal sector, as they may be deforming along

the front far upstream and being carried by strong westerly motion at the frontal interface

as the front propagates south.

In summary, with a decrease in terrain height, the Half-T run exhibits less intense

and lower duration rainfall in the steeper terrain of central Taiwan. The differences in

intensity could be attributed to greater orographic lift in the Control run, but trying to

understand the differences in duration are more complex. A proposed reason for higher

duration of rainfall in the Control run is due to a slow down of the Mei-yu front’s south-

ern propagation. A parallel with northern Taiwan is that heavier rainfall is collocated

with the front, but heavier rainfall is also correlated downstream of the front’s location

in proximity to the CMR. Therefore, by slowing the front in central Taiwan, the rainfall

duration will increase where the front remains quasi-stationary. In trying to determine

what causes a slower (faster) Mei-yu front in the Control (Half-T) run, two findings were

made. The first being that the strength and areal coverage of northwesterly postfrontal

flow pushes the front south. The second finding is that while the relative strength of

prefrontal southwesterly flow is similar between model runs, the more southerly the flow

is, the greater the southern propagation of the Mei-yu front. The Control run has weak

northwesterly postfrontal flow that does not extend far from the CMR and is forced by

orographic deformation of postfrontal westerlies. The Half-T run has stronger northwest-
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erly flow in the postfrontal sector that spans beyond the coastline, acting to push the front

south faster than the Control run. In the postfrontal sectors, the Control run experiences

slightly greater orographic blocking which creates orographic deformation in proximity to

the CMR. This deformation acts to create more southerly flow in the prefrontal sector that

resists southern propagation in the Control run as opposed to the Half-T run, increasing

rainfall duration.
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4.4 Figures and Tables

Figure 4.1: A schematic diagram shows the surface (black solid arrows) and 900 hPa (red
solid arrows) flow patterns with the barrier jet (thick red solid arrows). (a) The shallow
(<1 km) Mei-yu front is anchored over the northern side of the Yang-Ming Mountains for
almost 8 h during the morning of 2 June 2017 (0200–1000 LST 2 June). At the 900 hPa
level, the southwesterly barrier jet converges with the northwesterly flow in the southwest-
ern flank of the Mei-yu frontal cyclone around the northern tip of Taiwan. (b) Around
noontime, the Mei-yu front finally moves southward over the Yang-Ming Mountains into
the Taipei basin and converges with the southwesterly barrier jet over the Taipei basin.
From Tu et al. (2022).
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Figure 4.2: 900 hPa wind speed and wind barbs for (a, c) WRF Control and (b, d) WRF
Half-T at (a, b) 1800 UTC 1 June 2017 and (c, d) 0000 UTC 2 June 2017. Cross sections
are taken along lines BB’ and CC’ at 1800 UTC 1 June 2017.
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Figure 4.3: 900 hPa perturbation heights and wind barbs at 1800 UTC 1 June 2017 for
(a) WRF Control and (b) WRF Half-T.
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Figure 4.4: Cross sections (a, c, e) BB’ and (b, d, f) CC’ at 1800 UTC 1 June 2017 of (a, b) altitude relative Froude number, (c, d)
tangential wind speed and dry isentropes, and (e, f) orthogonal wind speed and vertical velocity contours every 1 ms−1 for WRF
Control. The black dashed line indicates the coastline.



71

Figure 4.5: Same as Figure 4.4 but for WRF Half-T.
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Figure 4.6: Wind barbs at 900 hPa, modified Parfitt et al. (2017) frontal diagnostic at 900 hPa, and rain accumulation over the
next hour in mm at 1900 UTC 1 June 2017 for (a) WRF Control and (b) WRF Half-T.
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Figure 4.7: Same as Figure 4.6 but at 2100 UTC 1 June 2017.
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Figure 4.8: Same as Figure 4.6 but at 2300 UTC 1 June 2017.
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Figure 4.9: Trajectories of release group 1 released at 900 hPa for (a, c) WRF Control and (b, d) WRF Half-T. Colors correspond
to the time at which trajectories were released relative to model forecast hour.
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Figure 4.10: Same as Figure 4.9, but for release group 2.
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Figure 4.11: Same as Figure 4.9, but for release group 3.
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Figure 4.12: Trajectories released at 875, 900, and 925 hPa for (a, c, e) WRF Control
and (b, d, f) WRF Half-T from (a, b) release location 1, (c, d) release location 2, and
(e, f) release location 3. Green(red) trajectories indicate parcels that do (do not) enter
northern Taiwan as indicated by the grey region bound between 24.75◦N and the northern
coastline.
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Figure 4.13: Average 900 hPa geopotential height anomaly and average wind barbs between 2100 UTC 1 June 2017 – 0300 UTC 2
June 2017 for (a) WRF Control and (b) WRF Half-T.
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Figure 4.14: 950 hPa wind direction (Fill), Parfitt et al. (2017) frontal diagnostic (Contour), and wind barbs for WRF Control at
(a) 0030 UTC 3 June 2017, (b) 0130 UTC 3 June 2017, and (c) 0230 UTC 3 June 2017.
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Figure 4.15: Same as Figure 4.14, but for WRF Half-T at (a) 2130 UTC 2 June 2017, (b) 2230 UTC 2 June 2017, and (c) 2330
UTC 2 June 2017.



82

Figure 4.16: Same as Fig. 4.14c, but at (a) 925 hPa and (b) 975 hPa.
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Figure 4.17: Same as Fig. 4.15c, but at (a) 925 hPa and (b) 975 hPa.
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Figure 4.18: Same as Figure 4.14, but with rainfall accumulation in mm over the next hour (Fill). Lines in (c) represent cross
sections used in Figures 4.20, 4.21, and 4.22.
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Figure 4.19: Same as Figure 4.15, but with rainfall accumulation in mm over the next hour (Fill). Lines in (b) represent cross
sections used in Figures 4.20, 4.21, and 4.22.
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Figure 4.20: Zonal cross sections along DD’ in (a, c) Figure 4.18 and (b, d) Figure 4.19. (a, b) represent zonal cross sections of
height-relative Froude number and (c, d) represent zonal cross sections of zonal wind speed with dry isentropes. The dashed black
line indicates the coastline.
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Figure 4.21: Same as Figure 4.20, but for cross section EE’ in (a, c) Figure 4.18 and (b, d) Figure 4.19.
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Figure 4.22: Meridional cross sections along FF’ in (a, c) Figure 4.18 and (b, d) Figure 4.19. (a, b) represent meridional cross
sections of zonal wind speed with dry isentropes and (c, d) represent meridional cross sections of meridional wind speed with vertical
velocity. The array of dots represent the trajectory release locations in Fig. 4.23, 4.24, and 4.26
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Figure 4.23: Trajectory paths for release locations in Figure 4.22 for WRF Control in the
(a) X-Y plane and (b) X-Z plane. The dashed line indicates the “stitched” release points
whereby lines to the west represent backwards trajectories and lines to the east represent
forwards trajectories.
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Figure 4.24: As in Fig. 4.23, but for WRF Half-T.
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Figure 4.25: A schematic representing the Lagrangian Froude number. At initial time,
t0, a parcel with a characteristic wind speed, height, and Brunt-Väisälä frequency, has a
wind direction facing terrain profile, H0. With these variables, the Froude number can be
calculated at t0. At some time later, t1, the Froude number can be calculated again using
new wind speed, height, Brunt-Väisälä frequency, and terrain height profile, H1.
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Figure 4.26: Lagrangian Froude number for trajectories found in (a) Fig. 4.23 for WRF Control and (b) Fig. 4.24 for WRF Half-T.
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Table 4.1: Number of parcels that reach northern Taiwan for WRF Control.

Control
Release Group

Release Group 1 Release Group 2 Release Group 3

Release Height
875 hPa 8/13 4/13 2/13 14/39
900 hPa 9/13 9/13 4/13 22/39
925 hPa 8/13 8/13 6/13 22/39

25/39 21/39 12/39 58/117

Table 4.2: Same as Table 1, but for WRF Half-T.

Half-T
Release Group

Release Group 1 Release Group 2 Release Group 3

Release Height
875 hPa 0/13 0/13 0/13 0/39
900 hPa 4/13 0/13 0/13 4/39
925 hPa 8/13 3/13 1/13 12/39

12/39 3/39 1/39 16/117



94

Chapter 5

Discussion

5.1 Rainfall Duration

In exploring the role of terrain in this 1-3 June 2017 extreme rainfall event, both northern

and central Taiwan experience a decrease in rainfall duration with a decrease in terrain

height. Similar in both regions, this model-based analysis showed that rainfall duration

was linked with slowing of the Mei-yu front. This finding supports and builds upon prior

work on this event by Wang et al. (2021) whereby there is a strong negative correlation

with rainfall accumulation in northern Taiwan with Mei-yu front speed; although their

study did not explicitly separate rainfall duration from intensity. It would be slightly

erroneous to state that rainfall forms along the front’s wind shift line as in principle, the

slight northern tilt of the Mei-yu front separates the heaviest rainfall from convective up-

drafts induced by low-level frontal convergence (Chen et al. 1998). The distance between

rainfall and the wind shift line, however, is not great enough to disassociate the two.

Therefore, the heaviest rainfall often forms near the leading edge of the Mei-yu front in

general. Regardless of rainfall intensity, stalling the front in a location leads to an increase

in rainfall duration.

In northern Taiwan, the method of stalling is through strengthening the low-level

prefrontal flow. The prefrontal sector has multiple mechanisms at play that can modify

the already moist, monsoonal flow. These mechanisms include, but are not limited to,
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the synoptic, marine boundary layer, and barrier jets (Chen et al. 2022). Of these, the

barrier jet is the most directly tied to orography and shows evidence in this study of

halting the front in northern Taiwan in the Control front at the 900 hPa level (Chen et

al. 2022). Although the synoptic and marine boundary layer jets are influenced by large

scale mechanisms (Chen et al. 2022), it would be an oversight to rule out modification of

their influence given a change in terrain height. Marine boundary layer jets are commonly

found below barrier jets near 925 hPa and the synoptic low-level jet core is found between

850-700 hPa, each having potential to become orographically blocked by the CMR (Fig. 4

of Section 4.2). Studying these jets and their relation to orographically induced rainfall are

outside the scope of this study and require a larger domain for analysis, but a prior study

by Tu et al. (2020) suggests that the marine boundary layer jet induces heavy rainfall in

northern Taiwan when in contact with the terrain and the Mei-yu front for this case.

No previous studies have explored the Mei-yu front and influence on rainfall in Central

Taiwan for this extreme rainfall case. Furthermore, there are no studies that explore the

front near the CMR or more generally, the dynamics of any front whose orientation is

perpendicular to a mountain range. Therefore, the results of this case study focusing on

central Taiwan are a first step in addressing this gap in the literature.

Whereas the front was halted by the barrier jet found in the prefrontal sector in north-

ern Taiwan, the slowing of the Control front in central Taiwan for this case is attributed

to weaker postfrontal flow and possibly stronger prefrontal flow. Determining which re-

lationship is more dominant in this region of steep topography will be a future research

topic with additional case studies. Regardless, there is evidence of a wind shift line near

the CMR which has not been closely examined prior to this study. Even with a reduction

in terrain height, a wind shift line is prominent near the CMR. A somewhat analogous

study by Xu et al. (2010) found that when Mei-yu fronts are situated east of the Tibetan

Plateau, there is little evidence of the front in proximity to the Plateau due to the sup-

pression of convection by downsloping westerlies. By this logic, with the Mei-yu front

situated to the west of the CMR, frontal development on the slopes is aided by orographic
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lift on both sides of the front. However, the June 2017 case study shows substantial differ-

ences in frontal placement between the Control and Half-T runs near the CMR that has

implications on rainfall location and duration.

A challenge in determining frontal progression in central Taiwan is determining under

what circumstances postfrontal winds curve counterclockwise to form westerlies, as seen in

the Control run, compared to northwesterlies, as seen in the Half-T run. One hypothesis is

a Kármán vortex forming in northwest Taiwan from diverted postfrontal winds originating

in northeast Taiwan (Schär and Smith 1993; Schär and Durran 1997), which is also a

common feature of track discontinuities of tropical cyclones in southeast Taiwan forming

leeside cyclones in the northwest (Lin et al. 2002; Lin et al. 2005). In theory, an increase

in Froude number, as seen throughout the results of the Half-T run, results in a larger

Kármán vortex radius (Heinze et al. 2012). As such, the larger vortex radius, as seen

in the Half-T postfrontal sector results in northwesterlies impinging on the front rather

than the westerlies in the Control run resulting from a smaller vortex. A limitation of this

reasoning is the seemingly incomplete cyclone in the Half-T run with no southerly branch

near the CMR, as well as it does not address how the curving postfrontal winds in the

Half-T run are stronger than those in the Control run, warranting future analysis with

additional case studies.

Another possible explanation for these postfrontal wind differences between runs is

found in the northern branch of the postfrontal orographic deformation in the Control

run. The northern branch forms southerlies upon colliding with the CMR which flows

opposite to north-northeasterly winds in northern Taiwan, creating a small cyclone that

forms clockwise rotation in the vicinity (Fig. 2a of Section 4.3). This pattern creates a bit

of a dilemma, however, since the orographic deformation seen in the postfrontal sector of

the Control run relies on turning of postfrontal winds into westerlies. This scenario could

be considered a “chicken or the egg” situation whereby the westerlies leading to orographic

deformation are attributed to a cyclone, but the cyclone is induced by the orographic

deformation. In all possibility, both theories could be present in the model runs, though it
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may not be important as the results from the Half-T trajectory analysis show that parcels

originate far west of the coastline and propagate along the front. Regardless, explaining

how these postfrontal and prefrontal flows converge determines frontal propagation speed

and in turn, contributes to the duration of rainfall in central Taiwan.

A mechanism not addressed in the results of this study is that regardless of where

the front is placed, there is nearly constant precipitation in the SMR and CMR for the

Control run. Although relatively light, it contributes to increasing rainfall duration in the

high terrain. A reason why this precipitation is not as predominant in the Half-T run is

due to the decrease in orographic lift seen in the run. This orographic precipitation does

also modify intensity, but it will be discussed in the next section.

5.2 Rainfall Intensity

While frontal placement is linked to duration, as heavy rainfall was found to be collocated

with the front, light rainfall also was nearly constantly observed in the SMR and CMR in

the Control run, contributing to the overall rainfall accumulation. This rainfall was not as

predominant in the Half-T run, likely owing to the decrease in orographic lift, which overall

can influence rainfall intensity. In this case study, a noticeable change in rainfall intensity

was only notable in central Taiwan. Despite the 5-10-knot difference in the prefrontal flow

attributed to the barrier jet strengths in northern Taiwan, that presumably would lead to

stronger convergence in the Control run and in turn, stronger lift and precipitation, but

intensity differences in northern Taiwan between runs were minimal. For much of northern

Taiwan, modeled rainfall totals match QPESUMS. The Control run slightly overproduces

rainfall suggesting that the lift along the front is sufficiently large such that strengthening

prefrontal flow is limited in its ability to increase lift. Thus, rainfall intensity along the

front does not change noticeably. Therefore, the terrain modification of rainfall is most

pronounced through the aforementioned influence on rainfall duration.

In central Taiwan, there is a more substantial change in intensity between model runs.

With a decrease in terrain height, there is a decrease in rainfall intensity. The strength
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of the front is likely not responsible for this difference especially when considering the

heaviest rainfall is likely associated with the MCSes forming far upstream from the CMR

in the Taiwan Strait and propagating east. These MCSes can be seen on a larger scale

through the channel 10 brightness temperatures of Himawari-8 (Fig. 3.3). Therefore, the

speculated difference could be due to orographic lift. Conventional knowledge states that

the updraft induced by topography is dependent on the gradient of the terrain and the

wind speed incident upon it (Lin et al. 2001). If the wind speed increases or if a mountain

becomes steeper (i.e. aspect ratio increase), the lift will increase. Within our model

runs, the reduced terrain height simply acts to deter orographic lift and coincidentally

orographically enhanced precipitation.

Idealized studies define mountain aspect ratios as:

A =
h

w
(5.1)

Where h is the mountain height and w is the mountain halfwidth (Chen and Lin 2005; Chen

et al. 2008). By reducing mountain aspect ratio, idealized flows produced precipitation

farther upstream from the mountain peak and thus has an influence on rainfall location.

Those studies, however, are idealized and thus do not account for frontal structures with

prefrontal and postfrontal flows as well as a 3-dimensional mountain range. However,

this study’s model runs do show that precipitation occurred farther west on the slopes of

the CMR for the Half-T run, suggesting a future application of the idealized aspect ratio

framework to investigating terrain-influenced rainfall in additional Mei-yu front studies in

this region.
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Chapter 6

Summary and Conclusions

On 2 June 2017, a strong Mei-yu front made landfall on the northern coastline of Taiwan.

Over the next two days, the front progressed south through the island, leading to extreme

amounts of rainfall that produced widespread damage to infrastructure and endangered

the populace. Notable regions of impact were Taipei Basin in northern Taiwan receiving

upwards of 600 mm of rainfall in a 12-hour span and central Taiwan where the maximum

48 hour rainfall recorded was found in the CMR with approximately 1500 mm of rainfall.

This event captured both aspects of extreme rainfall, high duration and high intensity,

and acts as an ideal case to study orographic influences on extreme precipitation.

This event was simulated using the WRF model creating a Control run and an ex-

perimental run (Half-T) where the terrain height was halved to determine orographic

influences on rainfall intensity, duration, and location during this event. The findings are

as follows:

1. In decreasing the terrain height, the strength of the orographically induced barrier jet

was decreased. This weakened barrier jet was not able to resist southern propagation

of the Mei-yu front in northern Taiwan compared to the stronger barrier jet in the

Control run.

2. In central Taiwan, orographic deformation on both sides of the Control front acted to

slow southern propagation of the Mei-yu front while the stronger postfrontal winds
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of the Half-T run pushed the front south.

3. In both northern and central Taiwan, slowing the propagation of the Mei-yu front

acted to the increase rainfall duration, therefore rainfall duration was lower in the

Half-T run.

4. Rainfall intensity was found to not differ significantly between model runs in northern

Taiwan, but was greater in central Taiwan for the Control run due to stronger

orographic lift. Orographic precipitation in the Half-T run is weaker due to less

orographic lift and a shift in rainfall location due to a change in mountain aspect

ratio.

It was found that regardless of model run, increasing terrain height results in greater

rainfall duration. A difference between model runs is that the Control run sees an increase

in rainfall intensity at high rainfall duration as terrain height increases whereas rainfall

intensity distributions in the Half-T run are mostly similar regardless of terrain height. By

using a bi-variate choropleth of intensity and duration, with a decrease in terrain height,

rainfall duration decreases in both northern and central Taiwan and rainfall intensity

decreases in central Taiwan only.

The decrease in rainfall duration in northern Taiwan with a decrease in rainfall du-

ration is attributed to a decrease in the barrier jet strength. Orographic blocking of

monsoonal, southwesterly flow in central and southern Taiwan, diverts flow downstream

to northwestern Taiwan where it converges with the mean flow to induce a jet at low

levels (Fig. 6.1). With a reduction in terrain height, the orographic blocking in central

and southern Taiwan is weakened, resulting in weaker diversion of flow to northern Tai-

wan, manifesting in a barrier jet that is 5-10 knots weaker than the Control run. With

a weaker barrier jet, the prefrontal flow is less resistant to the Mei-yu front’s southern

advancement, thus the front’s propagation speed is faster than in the Control run. The

most intense rainfall is collocated with the location of the front. Therefore, by speeding

up the propagation speed of the front, rainfall duration drops in the Half-T run while in
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northern Taiwan.

In central Taiwan, this work represents a first effort to study the dynamics of a front

perpendicular to a mesoscale mountain range. The decrease in terrain height results in a

decrease in rainfall duration and intensity in central Taiwan. Much like northern Taiwan,

extreme rainfall is tethered to the location of the Mei-yu front and rainfall duration is

inversely correlated to the Mei-yu front’s propagation speed. While there are slight changes

to prefrontal orographic deformation between model runs, the postfrontal sectors are what

determines frontal propagation speed. Whereas most of the Half-T postfrontal sector

converges with prefrontal flow, the only portion of the Control run’s postfrontal sector

that converges with the prefrontal sector is flow that orographically deforms (Fig. 6.2).

All of these assertions are in proximity to the CMR and rainfall in the CMR is linked to

the location of the front near the terrain regardless of where the front is over the ocean.

Rainfall intensity is linked to orographic lift which is predominantly altered by the gradient

of the terrain. Therefore, with a decrease in terrain height, orographic lift is decreased in

the Half-T run and with it, a decrease in rainfall intensity.

Future work acts to address shortcomings of this work as well as expanding upon it.

A limitation in this study is that while the mesoscale aspects of this event were faithfully

reproduced, the microscale was not, with exaggerated amounts of ice hydrometeors pro-

duced in WRF when compared to radar-inferred hydrometeors. A possible byproduct of

this misrepresentation of the microphysics is a lack of postfrontal stratiform precipitation

in northern Taiwan that is observed in the operational radars. This lack of stratiform

precipitation has implications for rainfall duration and intensity. As such, next steps will

compare microphysics schemes to address this problem and begin assessing how altering

the terrain height modifies the microphysical structure of precipitation in and outside of

the Mei-yu front in proximity to terrain.

Expanding outside of this event, the findings of this study will be compared with

radar observations and model results of IOPs 1 and 3 of PRECIP 2022, which are both

Mei-yu fronts that exhibited high rainfall accumulations but with varying intensities and
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durations. Each IOP produced upwards of 300 mm of rainfall in northwestern Taiwan,

but IOP 1 lasted 2 days whereas IOP 3 lasted 6.5 days. The advantage to studying these

events from the PRECIP 2022 campaign is that their peak rainfall was well captured by

the S-band dual-polarization radar, S-Pol. This radar allowed for high vertical resolution

observations of the hydrometeor profiles within the Mei-yu fronts in proximity to the

terrain. By utilizing this tool, the effects of different microphysical processes and how

they modify intensity and duration of extreme rainfall in complex terrain can be explored.
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6.1 Figures

Figure 6.1: A schematic representing the effect of halving terrain height on the barrier
jet strength. The common prefrontal and postfrontal winds are represented by the black
arrows. Placement of the Mei-yu Front is represented by the dashed line. Prefrontal
southwesterly flow encounters the CMR and becomes orographically blocked. In both
model runs, this flow is diverted to northern Taiwan, but since orographic blocking is
weaker for the Half-T run, a portion is orographically lifted over the CMR (blue). Flow
that is diverted converges with the mean southwesterly flow to form a barrier jet over
northwestern Taiwan with the barrier jet in the Control run (red) being stronger than
the barrier jet found in the Half-T run. This difference in barrier jet strength between
model runs causes a division in Mei-yu frontal progression speed with the Control front
progressing south slower than that of the Half-T front. In both model runs, extreme
rainfall occurs along the front.
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Figure 6.2: A schematic representing the effect of halving terrain height on the Mei-yu
front positioning in central Taiwan. The common prefrontal and postfrontal winds are
represented by the black arrows. Placement of the Mei-yu Front is represented by the
dashed line. Prefrontal southwesterly flow is split by the CMR with a portion reaching
toward west central Taiwan and another portion wrapping around the CMR to converge
with postfrontal northwesterlies. In the Control run (red), postfrontal winds curve from
northeasterlies into westerlies. These westerlies become orographically blocked by the
SMR and northern CMR, deforming into weak southwesterlies and northeasterlies. These
weak northeasterlies converge with the prefrontal flow to form the front near the terrain. In
the Half-T run, postfrontal winds curve from northeasterlies to northwesterlies, converging
with the prefrontal southwesterlies and pushing the Mei-yu front south. In both model
runs, extreme rainfall in the terrain occurs downstream of the front.
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